
An Abstract Node API for
Heterogeneous and Multi-core

Computing

Christopher G. Baker
Michael A. Heroux

Sandia National Laboratories

LACCS 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy under contract DE-AC04-94AL85000.

DMP vs. SMP

  Parallel computing has targeted two dominant architectures
over the past decades.

  Highly scalable distributed systems:
  programmed as a flat network of serial nodes
  employs message passing interface, typically MPI

  Moderately scalable shared memory systems:
  programmed indirectly using, e.g., OpenMP or directly via some

threading API (e.g., Pthreads)

  The latter approach cannot be applied to systems of the
former type.

  The former (MPI-based) approach can be used on systems
of the latter type.

MPI-Only Programming Model

  Dominant approach: a collection of nodes communicate
via message passing API such as MPI.

  In the presence of SMP nodes, possible approaches are:
  MPI under MPI
  employ hybrid MPI+threads approach
  maintain the “flat” MPI-Only model

  Flat MPI: k cores each on m nodes → O(k*m) MPI
processes

  “SMP-aware” MPI implementations allowed flat MPI
approach to maintain dominance
  shared memory copies for local communication
  single copy of application per node reduces overhead

  Full performance benefit may not be fully realizable.

Tramonto on Clovertown

275.9 66.9

20.6

13.0

9.4

12.7

10.3

7.7 7.6 7.5

0.0

5.0

10.0

15.0

20.0

25.0

30.0

1 2 4 6 8

MPI Processes

T
im

e
 (

s
e
c
)

Setup Time

Solve Time

Tramonto Clovertown Results Super-linear speedup
(Setup phase)

Sub-linear speedup
(Solve phase)

  Setup (The application code itself): Excellent MPI-only.
  Solve (libraries): Much poorer. Inherent in algorithms.

Tramonto Niagara2 Results
Tramonto Niagara2 Timings

4176.2 686.8

160.4

57.4

38.6
29.3

22.3 18.6 18.2
10.9 14.8 13.6 12.5

102.0

49.5

28.4

14.1 10.7 8.7 7.9 7.0 7.0 7.9 7.6 8.1 9.1

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8 12 16 24 32 36 48 52 56 64

MPI processes

T
im

e
 (

s
e
c
)

Setup Time

Solve
Time

Super-linear/linear speedup
(Setup phase)

Linear/sublinear speedup
(Solve phase)

Addressing These and Other Issues

  Disappointing kernel performance is not due to poor
implementation:
  memory subsystem cannot fully exploit all cores on the node
  solver algorithms may be handicapped by smaller domains

  General consensus is that the number of cores per node
will continue to increase for a while.
  These multicore architectures look like the SMP machines of

yesterday.
  However, now they are ubiquitous.
  Furthermore, it seems necessary to exploit them due to slowing

single-core performance gains.
  Solution: Apply known SMP algorithms from the past decades of

research.

Other Items On Our Wishlist

  Support for multi-precision:
  Double-precision is not always questioned in scientific computing.
  Single-prec. floating point arithmetic can be significantly faster.
  Smaller word size puts less strain on taxed memory hierarchy.
  Multi-precision algorithms allow combination of fast arithmetic

and need for higher accuracy.

  Support for newer architectures:
  FPGA, GPU, CBE, ???

  Can achieve these via a general purpose programming
environment with runtime support for desired platforms.
  e.g., Sequoia, RapidMind
  Too much trouble for me.
  Instead, narrow scope to our libraries

(i.e., those pesky solvers).

Tpetra Abstract Interfaces

  We propose a set of abstract interfaces for achieving these
goals in the Tpetra library of linear algebra primitives.

  Tpetra is a templated implementation of the Petra Object
Model:
  these classes provide data services for many other packages in the

Trilinos project (e.g., linear solvers, eigensolvers, non-linear
solvers, preconditioners)

  successor to Trilinos’s Epetra package

  Tpetra centered around the following interfaces:
•  Comm for providing communication
between nodes
•  Map for describing layout of
distributed objects.

•  DistObject for redistributing
distributed objects
•  Linear algebra object interfaces
(Operator, Vector)

Satisfying Our Goals: Templates

  How do we support multiple data types?
  C++ templating of the scalar type and ordinals.
  Not new, not difficult.
  Compiler support is good enough now.

  This provides generic programming capability,
independent of data types.

  Templating implements compile time polymorphism.
  Pro: No runtime penalty.
  Con: Potentially large compile-time penalty.

  This is okay. Compiling is a good use of multicore! :)
  Techniques exist for alleviating this for common and user data

types (explicit instantiation)

Example
Standard method prototype for apply matrix-vector multiply:
template <typename OT, typename ST>

CrsMatrix::apply(const MultiVector<OT, ST> &x,

 MultiVector<OT, ST> &y)

Mixed precision method prototype (DP vectors, SP matrix):
template <typename OT, typename ST>

CrsMatrix::apply(const MultiVector<OT,ScalarTraits<ST>::dp> &x,

 MultiVector<OT,ScalarTraits<ST>::dp> &y)

Exploits traits class for scalar types:
typename ScalarTraits<ST>::dp; // double precision w.r.t. ST

typename ScalarTraits<ST>::hp; // half precision w.r.t. ST

ST ScalarTraits<ST>::one(); // multiplicative identity

Sample usage in a mixed precision algorithm:

Tpetra::MultiVector<int, float> x, y;

Tpetra::CisMatrix<int, double> A;

A.apply(x, y); // SP matrix applied to DP multivector

C++ Templates

  Example was for float/double but works for:
  complex<float> or complex<double>

  Arbitrary precision (e.g., GMP, ARPREC)
  The only requirement is a valid specialization of the traits class.

The Rest: C++ Virtual Functions

  How do we address our desire to support multiple
 implementations for these objects?
  C++ virtual functions and inheritance.

  This provides runtime polymorphism.
  Use abstract base classes to encapsulate data and behavior.
  Specific concrete implementations of these interfaces

 provide adapters to target architectures.
  We will “abstract away” communication, data allocation

/placement and computation.

Tpetra Communication Interface
  Teuchos::Comm is a pure virtual class:

  Has no executable code, interfaces only.
  Encapsulates behavior and attributes of the parallel machine.
  Defines interfaces for basic comm. services between “nodes”, e..g.:

•  collective communications
•  gather/scatter capabilities

  Allows multiple parallel machine implementations.
  Generalizes Epetra_Comm.

  Implementation details of parallel machine confined to Comm
subclasses.

  In particular, Tpetra (and rest of Trilinos) has no dependence on any
particular API (e.g., MPI).

Comm Methods
getRank()

getSize()

barrier()

broadcast<Packet>(Packet *MyVals, int count, int Root)

gatherAll<Packet>(Packet *MyVals, Packet *AllVals, int count)

reduceAll<Packet>(ReductionOp op,

 int count, const Packet *local, Packet *global)

scan<Packet>(ReductionOp op,

int count, const Packet *send, Packet *scans)

Comm Implementations
  SerialComm simultaneous supports of serial and parallel coding.

  MpiComm is a thin wrapper around MPI communication routines.

  MpiSmpComm allows use of shared-memory nodes.

Abstract Node Class

  Trilinos/Kokkos: Trilinos compute node package.
  Abstraction definition in progress.

  Node currently envisioned as an abstract factory class for
computational objects.

Kokkos::Node

Kokkos::SerialNode Kokkos::CudaNode Kokkos::TbbNode …

Example:
Kokkos::LocalCrsMatrix<int,double> lclA;

lclA = myNode.createCrsMatrix(…);

lclA.submitEntries(…); // fill the matrix

Kokkos::LocalMultiVector<int,double> lclX = myNode.createMV(…),

 lclY = myNode.createMV(…);

lclA.apply(lclX,lclY); // apply the matrix operator

Abstract Node Class (2)
  Node handles platform-specific details, such as:

  how to allocate memory for the necessary data structures?
•  significant in the case of attached accelerators with distinct memory

 space.
  How to perform the necessary computations?

•  Tpetra is responsible only for invoking global communication, via the
 abstract Comm class.

•  In addition to supporting multiple architectures, Tpetra/Kokkos
 becomes a test bench for research into primitives.

  These abstractions (hopefully) provide us with flexibility to
 tackle a number of platforms.

  Cons:
  m kernels, p platforms → m*p implementations
  Heros can’t improve code they don’t have access to.

Sample Code Comparison: MV::dot()
MPI-only:

double dot(int len,

 double *x,

 double *y)

{

 double lcl = 0.0, gbl;

 for (int i=0; i<len; ++i)

 lcl += x[i]*y[i];

 MPI_ALLREDUCE(lcl,gbl,…);

 return gbl;

}

Tpetra/Kokkos:

template <typename ST>

ST Tpetra::MultiVector<ST>::dot(

 Comm comm,

 Kokkos::LocalVector<ST> x,

 Kokkos::LocalVector<ST> y)

{

 Scalar lcl, gbl;

 lcl = x.dot(y);

 reduceAll<ST>(comm,SUM,lcl,gbl);

 return gbl;

}

  For appropriate choices of Node and Comm, both implementations are equivalent.
  Right hand example is limited only by the available implementations of these classes:

  can determine whether library was compiled with support for GPU, MPI, etc.
  can compose different nodes for heterogeneous

Example: MPI-Only Ax = b
App
Rank 0

App
Rank 1

App
Rank 2

App
Rank 3

Lib
Rank 0

Lib
Rank 1

Lib
Rank 2

Lib
Rank 3

Mem
Rank 0

Mem
Rank 1

Mem
Rank 2

Mem
Rank 3

All ranks store A, x, b data in locally-visible
address space

Library solves Ax=b using distributed memory
algorithm, communicating via MPI

App passes matrix and vector values to library data
classes

Serial
Kernel
Rank 0

Serial
Kernel
Rank 1

Serial
Kernel
Rank 2

Serial
Kernel
Rank 3 Using: SerialNode, MpiComm

Example: MPI+Threads Ax = b
App
Rank 0

App
Rank 1

App
Rank 2

App
Rank 3

Lib
Rank 0

Lib
Rank 1

Lib
Rank 2

Lib
Rank 3

Mem
Rank 0

Mem
Rank 1

Mem
Rank 2

Mem
Rank 3

Multicore: “PNAS” Layout

Lib
Rank 0
Thread 0 Thread 1 Thread 2 Thread 3

All ranks store A, x, b data in memory visible to
rank 0

Library solves Ax=b using shared memory algorithms
on the node

App passes matrix and vector values to library data
classes

Using: SmpNode, SerialComm

Example: Multicore + GPU Ax = b

App
Rank 0-3

App
Rank 4

Lib
Rank 0-3

Lib
Rank 4

Kokkos objects allocate data according to
concrete implementation.

Library solves Ax=b using appropriate kernels

App passes matrix and vector values to library data
classes

CPU
memory

GPU
memory

SMP
kernel

CUDA
kernel

Using: SmpNode, CudaNode, SerialComm, CudaComm

Conclusion

  I wish I had some results.
  C++ polymorphism:

  allows library user to run apps on a wide variety of platforms
  allows/requires library developer to isolate implementation from

 interface
  gives hacker/hero a hook for experimentation/salvation

  Abstract Comm has been in use in Epetra for years; some
 use of abstract interfaces to hide implementation have
 already seen experimental use.

  Development of this API for Tpetra is currently in
 progress; expect limited release in March ‘09, general
 release in Sept ‘09.

