
An Abstract Node API for 
Heterogeneous and Multi-core 

Computing 

Christopher G. Baker 
Michael A. Heroux 

Sandia National Laboratories 

LACCS 2008 

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy under contract DE-AC04-94AL85000.




DMP vs. SMP 

  Parallel computing has targeted two dominant architectures 
over the past decades. 

  Highly scalable distributed systems: 
  programmed as a flat network of serial nodes 
  employs message passing interface, typically MPI 

  Moderately scalable shared memory systems: 
  programmed indirectly using, e.g., OpenMP or directly via some 

threading API (e.g., Pthreads) 

  The latter approach cannot be applied to systems of the 
former type.  

  The former (MPI-based) approach can be used on systems 
of the latter type. 



MPI-Only Programming Model 

  Dominant approach: a collection of nodes communicate 
via message passing API such as MPI. 

  In the presence of SMP nodes, possible approaches are: 
  MPI under MPI 
  employ hybrid MPI+threads approach 
  maintain the “flat” MPI-Only model 

  Flat MPI: k cores each on m nodes → O(k*m) MPI 
processes 

  “SMP-aware” MPI implementations allowed flat MPI 
approach to maintain dominance 
  shared memory copies for local communication 
  single copy of application per node reduces overhead 

  Full performance benefit may not be fully realizable. 
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  Setup (The application code itself): Excellent MPI-only. 
  Solve (libraries): Much poorer. Inherent in algorithms. 
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Addressing These and Other Issues 

  Disappointing kernel performance is not due to poor 
implementation: 
  memory subsystem cannot fully exploit all cores on the node 
  solver algorithms may be handicapped by smaller domains 

  General consensus is that the number of cores per node 
will continue to increase for a while. 
  These multicore architectures look like the SMP machines of 

yesterday. 
  However, now they are ubiquitous. 
  Furthermore, it seems necessary to exploit them due to slowing 

single-core performance gains. 
  Solution: Apply known SMP algorithms from the past decades of 

research. 



Other Items On Our Wishlist 

  Support for multi-precision: 
  Double-precision is not always questioned in scientific computing. 
  Single-prec. floating point arithmetic can be significantly faster. 
  Smaller word size puts less strain on taxed memory hierarchy. 
  Multi-precision algorithms allow combination of fast arithmetic 

and need for higher accuracy. 

  Support for newer architectures: 
  FPGA, GPU, CBE, ??? 

  Can achieve these via a general purpose programming 
environment with runtime support for desired platforms. 
  e.g., Sequoia, RapidMind 
  Too much trouble for me. 
  Instead, narrow scope to our libraries  

(i.e., those pesky solvers). 



Tpetra Abstract Interfaces 

  We propose a set of abstract interfaces for achieving these 
goals in the Tpetra library of linear algebra primitives. 

  Tpetra is a templated implementation of the Petra Object 
Model: 
  these classes provide data services for many other packages in the 

Trilinos project (e.g., linear solvers, eigensolvers, non-linear 
solvers, preconditioners) 

  successor to Trilinos’s Epetra package 

  Tpetra centered around the following interfaces: 
•  Comm for providing communication 
between nodes 
•  Map for describing layout of 
distributed objects. 

•  DistObject for redistributing 
distributed objects 
•  Linear algebra object interfaces 
(Operator, Vector) 



Satisfying Our Goals: Templates 

  How do we support multiple data types? 
  C++ templating of the scalar type and ordinals. 
  Not new, not difficult. 
  Compiler support is good enough now. 

  This provides generic programming capability, 
independent of data types. 

  Templating implements compile time polymorphism. 
  Pro: No runtime penalty. 
  Con: Potentially large compile-time penalty. 

  This is okay. Compiling is a good use of multicore! :) 
  Techniques exist for alleviating this for common and user data 

types (explicit instantiation) 



Example 
Standard method prototype for apply matrix-vector multiply: 
template <typename OT, typename ST>

CrsMatrix::apply(const MultiVector<OT, ST> &x, 

                       MultiVector<OT, ST> &y)


Mixed precision method prototype (DP vectors, SP matrix): 
template <typename OT, typename ST>

CrsMatrix::apply(const MultiVector<OT,ScalarTraits<ST>::dp> &x,   



 
        MultiVector<OT,ScalarTraits<ST>::dp> &y)


Exploits traits class for scalar types: 
typename ScalarTraits<ST>::dp;      // double precision w.r.t. ST

typename ScalarTraits<ST>::hp;      //   half precision w.r.t. ST

ST ScalarTraits<ST>::one();         // multiplicative identity


Sample usage in a mixed precision algorithm: 

Tpetra::MultiVector<int, float> x, y;

Tpetra::CisMatrix<int, double> A;

A.apply(x, y);  // SP matrix applied to DP multivector




C++ Templates 

  Example was for float/double but works for: 
  complex<float> or complex<double>

  Arbitrary precision (e.g., GMP, ARPREC) 
  The only requirement is a valid specialization of the traits class. 



The Rest: C++ Virtual Functions 

  How do we address our desire to support multiple
 implementations for these objects? 
  C++ virtual functions and inheritance. 

  This provides runtime polymorphism. 
  Use abstract base classes to encapsulate data and behavior. 
  Specific concrete implementations of these interfaces

 provide adapters to target architectures. 
  We will “abstract away” communication, data allocation

/placement and computation. 



Tpetra Communication Interface 
  Teuchos::Comm is a pure virtual class:   

  Has no executable code, interfaces only. 
  Encapsulates behavior and attributes of the parallel machine. 
  Defines interfaces for basic comm. services between “nodes”, e..g.: 

•  collective communications 
•  gather/scatter capabilities 

  Allows multiple parallel machine implementations. 
  Generalizes Epetra_Comm. 

  Implementation details of parallel machine confined to Comm 
subclasses. 

  In particular, Tpetra (and rest of Trilinos) has no dependence on any 
particular API (e.g., MPI). 



Comm Methods 
getRank()   

getSize()   

barrier()   

broadcast<Packet>(Packet *MyVals, int count, int Root)   

gatherAll<Packet>(Packet *MyVals, Packet *AllVals, int count)   

reduceAll<Packet>(ReductionOp op, 



 
     int count, const Packet *local, Packet *global)   

scan<Packet>(ReductionOp op, 



 
int count, const Packet *send, Packet *scans)   


Comm Implementations 
  SerialComm simultaneous supports of serial and parallel coding.

  MpiComm is a thin wrapper around MPI communication routines.

  MpiSmpComm allows use of shared-memory nodes. 



Abstract Node Class 

  Trilinos/Kokkos: Trilinos compute node package. 
  Abstraction definition in progress. 

  Node currently envisioned as an abstract factory class for 
computational objects. 

Kokkos::Node 

Kokkos::SerialNode Kokkos::CudaNode Kokkos::TbbNode … 

Example: 
Kokkos::LocalCrsMatrix<int,double> lclA;

lclA = myNode.createCrsMatrix(…);

lclA.submitEntries(…); // fill the matrix

Kokkos::LocalMultiVector<int,double> lclX = myNode.createMV(…),

                                     lclY = myNode.createMV(…);

lclA.apply(lclX,lclY); // apply the matrix operator




Abstract Node Class (2) 
  Node handles platform-specific details, such as: 

  how to allocate memory for the necessary data structures? 
•  significant in the case of attached accelerators with distinct memory

 space. 
  How to perform the necessary computations? 

•  Tpetra is responsible only for invoking global communication, via the
 abstract Comm class. 

•  In addition to supporting multiple architectures, Tpetra/Kokkos
 becomes a test bench for research into primitives. 

  These abstractions (hopefully) provide us with flexibility to
 tackle a number of platforms. 

  Cons: 
  m kernels, p platforms → m*p implementations 
  Heros can’t improve code they don’t have access to. 



Sample Code Comparison: MV::dot() 
MPI-only: 

double dot(int len,

           double *x, 


           double *y) 

{

  double lcl = 0.0, gbl;

  for (int i=0; i<len; ++i)

    lcl += x[i]*y[i];

  MPI_ALLREDUCE(lcl,gbl,…);


  return gbl;

}


Tpetra/Kokkos: 

template <typename ST>

ST Tpetra::MultiVector<ST>::dot(

       Comm comm,


       Kokkos::LocalVector<ST> x,

       Kokkos::LocalVector<ST> y) 

{

  Scalar lcl, gbl;

  lcl = x.dot(y);

  reduceAll<ST>(comm,SUM,lcl,gbl);


  return gbl;

}


  For appropriate choices of Node and Comm, both implementations are equivalent. 
  Right hand example is limited only by the available implementations of these classes: 

  can determine whether library was compiled with support for GPU, MPI, etc. 
  can compose different nodes for heterogeneous 
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Example: MPI+Threads Ax = b 
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Example: Multicore + GPU Ax = b 
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Conclusion 

  I wish I had some results. 
  C++ polymorphism: 

  allows library user to run apps on a wide variety of platforms 
  allows/requires library developer to isolate implementation from

 interface 
  gives hacker/hero a hook for experimentation/salvation 

  Abstract Comm has been in use in Epetra for years; some
 use of abstract interfaces to hide implementation have
 already seen experimental use. 

  Development of this API for Tpetra is currently in
 progress; expect limited release in March ‘09, general
 release in Sept ‘09. 


