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Sony-Toshiba-IBM Center of Competence
for the Cell/B.E. at Georgia Techfor the Cell/B.E. at Georgia Tech

Mission: grow the community of Cell 
Broadband Engine users and developers

•Fall 2006: Georgia Tech wins competition for 
hosting the STI Center

•First publicly-available IBM QS20 Clustery

•200 attendees at 2007 STI Workshop

•Multicore curriculum and training•Multicore curriculum and training

•Demonstrated performance on
–Multimedia and gaming

S i tifi  ti–Scientific computing
–Medical applications
–Financial services

David A. Bader, Director

http://sti.cc.gatech.edu
David A. Bader



Applications

• CellBuzz: Freely-available, open source 
f Clibraries optimized for the Cell/B.E.

http://sourceforge.net/projects/cellbuzz/

– ZLIB & GZIP: data compression
– FFT: fast Fourier transform
– RC5: encryption
– MPEG-2: video encoding and decoding
– JPEG2000: digital content processing

• Financial Modeling
David A. Bader



Cell/B.E. Libraries: FFT and JPEG2000

• FFTC: Fastest Fourier Transform on the Cell/B.E.
– 1-Dimensional single precision DIF-FFT optimized – 1-Dimensional single precision DIF-FFT optimized 

for 1K-16K complex input samples
– Parallelize & optimize computation of a single FFT 

computation
D i  hi h f  h i ti  b i  i  – Design high performance synchronization barrier using 
inter-SPE communication

– Demonstrated superior performance of 18.6 GFlop/s for 8K 
complex input samples. Butterflies of  ordered DIF FFT

20

25

IBM Power5
AMD Opteron
Intel Pentium 4
FFTW on Cell
Our implementation (8 SPEs)
Intel Core Duo

FFTC

• JPEG2000 on the Cell/B.E.
– Optimize coding/decoding by data decomposition / data 
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15alignment / vectorization
– Demonstrated average speedup of 3.1 over 

Intel 3.2 GHz Pentium-4

Input size

1024 2048 4096 8192 16384
0The source code is freely available from our CellBuzz project in SourceForge 

http://sourceforge.net/projects/cellbuzz/
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Cell/B.E. Libraries: ZLIB and MPEG-2

• ZLIB Data compression & decompression library
– Vectorize compute intensive kernels and parallelize to run on multiple SPEs
– Extend the gzip header format while maintaining compatibility with legacy gzip

decompressors
– Demonstrated speedup of 2.9 over high-end Intel Pentium-4 system

• MPEG-2 Video Decoding
– First parallelization of a multimedia application on Cell/B.E.
– Demonstrated a speedup of 3 over Intel 3.2GHz Xeon.e o st ated a speedup o 3 o e te 3 G eo

The source code is freely available from our CellBuzz project in SourceForge 
http://sourceforge.net/projects/cellbuzz/

David A. Bader



Using the Cell/B.E. in Aircraft Health Monitoring

“Retired Marine Lt. Gen. Bernard Trainor said the issue of aging aircraft is a constant 
complaint of all branches of service.”

Atl t J l C tit ti

• Fault Diagnosis

Atlanta Journal Constitution
April 27, 2002

g
– Estimate the crack 

length without 
di bl  b d  disassembly based on 
vibration data collected 
from multiple sensors.

• Failure Prognosis
– Estimate the expected 

time before crash

David A. Bader



System-of-Systems Decompostion
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Overview of the Diagnosis and Prognosis Process
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Stress Table 
Crack 
Length Kmi Kma

1. 30.2 27.9
2 27.2 25.6

2. 21.5 21.2
3 19.4 17.82

Experimental Data 

System Model for 
Diagnosis RUL

Data Methods 

Offline Modules 

System Model for 
Prognosis 

Involves multiple computationally expensive modules!!!
DAQ 
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Fast Transforms on the Cell/B.E.

• Fast Fourier Transform
• Discrete Wavelet Transform

9David Bader



FFTC: Fastest Fourier Transform for Cell/B.E.

• Focus on medium size FFT computations
– Complex single-precision 1-Dimensional FFT

• Input samples and output results reside in 
main memory.

• Radix 2, 3 and 5.ad , 3 a d 5
• Optimized for 1K-16K input samples.
• Focus on achieving high performance for the • Focus on achieving high performance for the 

computation of a single FFT, rather than 
increasing throughputincreasing throughput.

10David Bader



Existing FFT Research on Cell/B.E.

• [Williams et al., 2006], analyzed peak performance.
• [Cico, Cooper and Greene, 2006] estimated 22.1 

GFlops/s for an 8K complex 1D FFT that resides in 
the Local Store of one SPEthe Local Store of one SPE.
– 8 independent FFTs in local store of 8 SPEs gives 176.8 

GFlops/s.p /

• [Chow, Fossum and Brokenshire, 2005] achieved 
46.8 GFlops/s for 16M complex FFT.
– Highly specialized for this particular input size.

• FFTW is a highly portable FFT library of various 
types, precision and input size.

David Bader 11



Our FFTC is based on Cooley Tukey

• Input is one dimensional vector of complex values.

• Algorithm is iterative, no recursion. 

• Out of Place approach is used.pp

• Requires two arrays A&B for computation, one input and 
one output that are swapped at every stage. p pp y g

• Out of place approach prevents data reordering after the 
last stage.g

• Algorithm requires log N stages. Each stage requires O(N) 
computation. p
– Complexity O(N log N) 

12David Bader



Stage begin

Twiddle factors

13

Stage end
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Illustration of the Algorithm

Illustration of the 
algorithm for n=16 algorithm for n 16 
complex values.

Distance between pairs 
of output values double at 
every subsequent stage. 

Shows how output of 
one stage serves as the 
inp t to another

David Bader 14

input to another.



FFTC design on Cell/B.E. : Challenges

• Synchronize step after every stage leads to significant 
overhead.

• Reduce synchronization 
stages.g
• Design efficient barrier 
synchronization routine.
• We will later describe an We will later describe an 
efficient tree-based 
synchronization algorithm 
based on inter-SPE based on inter SPE 
communication.

Insert synchronization barrier

David Bader 15

Insert synchronization barrier



FFTC design on Cell/B.E. : Challenges (contd..)
Load balancing to achieve better SPU utilization
– No SPE should wait at the synchronization barrier.

R i  ffi i t ll li ti  t h i  t  ll t  d t  t  – Require efficient parallelization technique to allocate data to 
SPEs.

– Strategy should be scalable across multiple chips (large 
b  f SPE )

Vectorization difficult for every stage

First 2 stages.
number of SPEs).

- Stages 1 & 2, do not have regular 
data access pattern.
- Require data reorganization to fully 
utilize the SPE computational power.
- Optimizing the first 2 stages become 
important for medium size inputs, as it 

20 2 f

David Bader 16

may constitute 20-25% of the total 
running time.



FFTC design on Cell/B.E. : Challenges (cont’d)

Limited local store
- require space for N/2 twiddle factors and input data.require space for N/2 twiddle factors and input data.
- loop unrolling and duplication increases size of the code.
- Effectively manage code and data within 256KB.

Algorithm is branchy:
- Doubly nested for loop within the Doubly nested for loop within the 
outer while loop
- Lack of branch predictor 
compromises performancecompromises performance.
- Provide branch hints and 
restructure the algorithm to 
eliminate branch

David Bader 17

eliminate branch.



Paralleling FFTC on the Cell/B.E.

Input size N (complex samples) 

Divide the input array in 2*p chunks Divide the input array in 2*p chunks 
where p: number of available SPEs.

PPE allocates chunk i and i+p SPE i  PPE allocates chunk i and i+p SPE i, 
spawns threads and waits for completion.

- Data allocation technique is same at 
 t gevery stage.

- Efficient technique as it prevents 
intervention from PPE during the 
computation.

Achieves load balancing, each SPE 
f

David Bader 18

receives equal amount of work.



Optimization for SPE

The input data at every stage is fetched using 
DMA in a multi-buffered way.

- The block size is limited by a global 
parameter buffer_size.

While loop duplication for Stages 1 & 2
- For vectorization of these stages we need 
to use spe shuffle intrinsic on the output to use spe s u e t s c o t e output
vector. 
- The figure above gives the shuffle pattern 
for Stage 1  and the figure below for Stage for Stage 1, and the figure below for Stage 
2.

Loop duplication increases code size in the 

David Bader 19

Loop duplication increases code size in the 
already limited local store.



Optimization for SPE (cont’d)
Duplicate while loop when loop 

counter is < buffersize and 
th i  otherwise. 

- Need to stall for DMA get at  
different places within the       
inner for loop.
- The second case allows for       
efficient loop unrolling in the      efficient loop unrolling in the      
inner-most for loop.

While loop duplication for these 2 While loop duplication for these 2 
cases further increase code size, 
that limits the size of FFT that can be 
computed using this methodology

David Bader 20

computed using this methodology.



Experimental Setup

• Manual Loop unrolling, multi-buffering, inter SPE 
communication, odd-even pipelining, vectorization., p p g,

• Instruction level profiling and performance analysis using Cell 
SDK 3.0, used xlc compiler at level 3 optimization.

• FLOP analysis• FLOP analysis
– Operation Count : (5*N log N) floating point operations
– For 2 complex value computations we requirep p q

• One complex subtraction (2 FLOP), One complex addition (2 FLOP) 
and one complex multiplication (6 FLOP).

David Bader 21



Performance analysis : Scaling across SPEs

FFT Size 1K
Number of SPEs vs Running Time
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FFT Size 4K
Number of SPEs vs Running Time
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• Near linear scaling from 1 to 8 SPEs. Thus it should scale well 
across multiple chips as well.

David Bader 22

• Speedup increases with larger input size.



Performance Comparison of FFTs
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* Performance numbers from BenchFFT.

Input size



FFTC Summary

• Use various techniques such as Manual Loop unrolling, 
multi-buffering, inter SPE communication, odd-even g, ,
pipelining, vectorization to achieve performance on a SPE.

• Loop duplication increases the code size but helps in further 
ti i ti    SPEoptimizations on an SPE.

• We demonstrate superior performance of 18.6 GigaFlop/s 
for an FFT of size 8k-16K, and believe we have the fastest ,
FFT implementation on the Cell/B.E.

• Code available at http://sourceforge.net/projects/cellbuzz/

David Bader 24



Discrete Wavelet Transform on Cell/B.E.

• We design an efficient data decomposition scheme 
to achieve high performance with affordable to achieve high performance with affordable 
programming complexity

• We introduce multiple Cell/B E  and DWT specific • We introduce multiple Cell/B.E. and DWT specific 
optimization issues and solutions

• Our implementation achieves 34 and 56 times • Our implementation achieves 34 and 56 times 
speedup over one PPE performance, and 4.7 and 
3.7 times speedup over the cutting edge multicore p p g g
processor (AMD Barcelona), for lossless and lossy 
DWT, respectively.

David Bader



Discrete Wavelet Transform (in JPEG2000)

• Decompose an image in both vertical and horizontal 
direction to the sub-bands representing the coarse and direction to the sub bands representing the coarse and 
detail part while preserving space information

LL HL

LH HH

David Bader



Discrete Wavelet Transform (in JPEG2000)

• Vertical filtering followed by horizontal filtering
• Highly parallel but bandwidth intensive• Highly parallel but bandwidth intensive
• Distinct memory access pattern becomes a problem
• Adopt Jasper [Adams2005] as a baseline codeAdopt Jasper [Adams2005] as a baseline code

David Bader



Previous work

• Column grouping [Chaver2002] to enhance cache behavior 
in vertical filteringin vertical filtering

• Muta et al. [Muta2007] optimized convolution based
(require up to 2 times more operations than lifting based
approach) DWT for Cell/B.E.

- High single SPE performance
Does not scale above 1 SPE- Does not scale above 1 SPE

David Bader



Data Decomposition Scheme

2 D array width Row padding

A multiple of the 
cache line size

Cache line aligned

2-D array width Row padding

A unit of data 

2-D 
array 
height

transfer and 
computation

A unit of dataheight A unit of data 
distribution to 
the processing 

l t

A multiple of the 
cache line size

Remainder

elements

Distributed to 
the SPEs

Processed by 
the PPE

David Bader



Data Decomposition Scheme

• Satisfies the alignment and size requirements for efficient 
DMA data transfer and vectorizationDMA data transfer and vectorization.

• Fixed LS space requirements regardless of an input image 
size

• Constant loop count

A it f d tA unit of data 
transfer and 
computation

constant width

David Bader



Vectorization – Real number representation

• Jasper adopts fixed point representation
R l  fl ti  i t ith ti  ith fi d i t – Replace floating point arithmetic with fixed point 
arithmetic

– Not a good choice for Cell/B.E.Not a good choice for Cell/B.E.

Inst. Latency 
(SPE)h $5 $3 $4 (SPE)

mpyh 7 cycles

7 l

mpyh $5, $3, $4
mpyh $2, $4, $3
mpyu $4, $3, $4 fm $3, $3, $4

mpyu 7 cycles

a 2 cycles

py , ,
a $3, $5, $2
a $3, $3, $4

fm 6 cycles

David Bader



Loop Interleaving

• In a naïve approach, a single vertical filtering involves 3 or 6 
times data transfertimes data transfer

• Bandwidth becomes a bottleneck
• Interleave splitting, lifting, and optional scaling stepsp g g p g p

Does not fit into 
the LSthe LS

David Bader



Loop Interleaving

• First interleave multiple lifting steps
• Then  merge splitting step with the interleaved lifting step

low0

high0

low0

low1

low0*

low1*

• Then, merge splitting step with the interleaved lifting step

high0

low1

high1

low1

low2

low3

low1

low2*

low3*InterleavedS littilow2

high2

low3

high0

high1

high2

high0*

high1*

high2*

Interleaved
LiftingSplittingOverwritten

before read

low3

high3

high2

high3

high2

high3*

• Use temporary main memory buffer for the upper half

David Bader



Fine–grain Data Transfer Control

• Initially, we copy data from the buffer after the interleaved 
loop is finishedp

• Yet, we can start it just after low2 and high2 are read
• Cell/B.E.’s software controlled DMA data transfer enables 

this
low0

high0

low0

low1

low0*

low1*

this

low1

high1
low2

low2

low3
high0

low2*

low3*
high0*

Interleaved
LiftingSplittinglow2

high2

low3

high0

high1

high2

high0

high1*

high2*

Lifting

high3 high3 high3*
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Performance Evaluation

* 3800 X 2600 color image, 5 resolution levels 
* Execution time and scalability up to 2 Cell/B.E. chips (IBM QS20)

David Bader



Performance Evaluation 
Comparison with x86 ArchitectureComparison with x86 Architecture

•One 3.2 GHz Cell/B.E. chip (IBM QS20)
•One 2.0 GHz AMD Barcelona chip (AMD Quad-core Opteron 8350)
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DWT Summary

• Cell/B.E. has a great potential to speed-up parallel 
transforms but requires careful implementationtransforms but requires careful implementation

• We design an efficient data decomposition scheme to 
achieve high performance with affordable programming 
complexity

• Our implementation demonstrates 34 and 56 times 
speedup over one PPE  and 4 7 and 3 7 times speedup over speedup over one PPE, and 4.7 and 3.7 times speedup over 
the AMD Barcelona processor with one Cell/B.E. chip

• Cell/B.E. can also be used as an accelerator in combination 
with the traditional microprocessor

David Bader



IBM QS22

• Delivers 204.8 Gflop/s (double-precision) peak performance 
with FMA (fused-multiply-and-add) in comparison with 29 2 with FMA (fused multiply and add) in comparison with 29.2 
Gflop/s in QS20 or QS21

• Supports 4 to 32 GB (DDR2) main memory in comparison 
with 1 GB (XDR) in QS20 or QS21

P XC ll 8i P XC ll 8iPowerXCell 8i
102.8 Gflop/s

(DP) peak
25 6

PowerXCell 8i
102.8 Gflop/s

(DP) peak
25 6

20 GB/s

2-16 GB DDR2 DRAM

25.6
GB/s

2-16 GB DDR2 DRAM

25.6
GB/s

2 16 GB DDR2 DRAM 2 16 GB DDR2 DRAM
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R Optimizations for the Cell

• Optimize R statistics package for the Cell/B.E. processor
– BLAS– BLAS
– LAPACK
– random number generator, and
– variance/covariance/correlation

• IBM & Georgia Tech collaboration; freely-available, open 
source (GPL) code will be released on SourceForge, based ( ) g ,
on R-2.7.0

• Demonstration of native double-precision performance using 
th  IBM QS22 Bl d  ith d l P  XC ll 8i the IBM QS22 Blade with dual Power XCell 8i processors

David Bader



R Performance on the QS22: 
Covariance w/ Pearson’s methodCovariance w/ Pearson s method
• Covariance computation with Pearson’s method 

(without cache blocking)(without cache blocking)
• QS20: was compute bounded

QS22  i   b d idth b d d• QS22: is now bandwidth bounded
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R Performance on the QS22:
Covariance w/ Kendall’s methodCovariance w/ Kendall s method
• Covariance computation with Kendall’s method
• Compute bounded in both systems
• Invokes sign() function in the loop body

– Needed for correctness checking

50

60

128 items
*

30

40

G
flo

p/
s

4096 samples/item

0

10

20

QS22 QS20

David Bader



R Performance on the QS22:
Covariance  further optimizationsCovariance, further optimizations
• Test kernel created by removing sign() function call 

in Kendall’s methodin Kendall’s method
– Does not affect correctness

• Compute bounded in both systems• Compute bounded in both systems
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Financial Services using R on Cell

• CreditMetrics (R extension package) on the QS22 with 
optimized BLAS  LAPACK  and RNG librariesoptimized BLAS, LAPACK, and RNG libraries

• Additional optimizations (e.g. modifying script for smaller 
memory footprint, not specific to the Cell/B.E.)
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Cell/B.E. Apps: Financial Modeling
• Objective: Demonstrate a competitive edge of the Cell/B.E. for Financial 

Services.

• European Option Pricing. Black - Scholes equation:

)()()()( tdWtSdttStdS σμ +=

• Collateralized Debt Obligation (CDO) pricing
– Gaussian Copula, Monte Carlo simulation

Special 
Purpose 
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interest
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h
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• Optimize various 

(SPV) Mezzanine
5-30%
Equity
0-5%

Cash Funding

L Attachment
point - a

– random number generators : Mersenne Twister, Hammersley sequence, LCG.
– normalization techniques : Box Mueller Polar/Cartesian, Low Distortion Map.
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Cell/B.E. Apps: Financial Modeling/ pp g
Performance Analysis : Random Number Generation

Over 3 Billion 
random numbers 
per second from a 
single Cell/B.E.

* The performance results on the Intel AMD and IBM PowerPC processors are from:* The performance results on the Intel, AMD and IBM PowerPC processors are from:
M. Saito and M. Matsumoto. Simple and Fast MT: A Two times faster new variant of  Mersenne twister. In Proc. 
7th Intl. Conference on Monte Carlo Methods in Scientific Computing, Germany, 2006.
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Cell/B.E. Apps: Financial Modeling/ pp g
Performance Analysis : European Option pricing

[1] V. Podlozhnyuk. Monte Carlo Option pricing. (NVIDIA CUDA) White paper, v1.0, June, 2007.
[2] IBM Corporation The Cell project at IBM Research White paper

1.5x over optimized CUDA implementation for NVIDIA G80.
2x over optimized implementation for RapidMind on Cell.

D bl i i ill b ti l

[2] IBM Corporation. The Cell project at IBM Research. White paper.

Double precision will be essential

David A. Bader


