High Productivity and the Cray

Cascade System

Keith Shields

Director, Cray HPCS Program Office
keith@cray.com

Los Alamos Computer Science Symposium
LACSS (Oct 2008) October 14t 2008 Slide 1

Y
Adaptive Supercomputing Vision

Combines multiple processing architectures
Into a single, scalable system

Tomorrow — Adaptive
Supercomputing

rocessor that can leverage multiple
echnologies while operating within

1 single code

= Scalar

= Vector

Y IERCALE

ADAPT = Multi-threading
Today: mlﬂtlg Software (compilers & languages) to
Hybrid Supercomp A ake advantage of these features

I Ly = | 1
= Multiple processor CE AR TINCEYS T Ei)
types in the same & U EEREORNANGE
= Software to allow
them to be easily uﬂ-"ﬂ,JL-,ijﬂ SESSOR
used and fﬂfﬂ!ﬂf_ﬂ Uf‘j""*
administered _,
= Heterogeneous -
workflows "

Adapt the system to the application — not the application to the system

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 2

The Cray Roadmap ..

Realizing Our Adaptive
Supercomputing Vision

Scalar

Vector

LACSS (Oct 2008 Slide 3

N — v
High Productivity Computing Systems

Critical to National Security

= Develop a new generation of economically viable high productivity computing
systems for national security and industrial user communities (2011)

e Ensure U.S. lead, dominance, and control in this critical technology

Phase 11l Vendors:

Il
.|||
L
@

Mission Partners:

=]

E

?
i
;
i
!
I

Impact:
e Performance (time-to-solution): speedup critical apps by 10X to 40X
e Programmability (idea-to-first-solution): dramatically reduce cost and time for developing apps
e Portability (transparency): insulate software from system specifics
e Robustness (reliability): continue operating in the presence of failures

Applications:

B =
-_i{;;n_ ‘:;&f
g

. _ Climate Nuclear Stockpile Weapons
Weather Prediction Ocean/wave Forecasting Ship Design Modeling Stewardship Integration

v ma e St v

Fill the Critical DoD Need for:

Operational weather and ocean forecasting, weapons design and analysis, airborne

v
Productivity Begins with the Architecture

" Global shared address space with one-sided data transfers

So that code can easily reference and access objects held in remote nodes
without involvement of code running on those nodes

" High bandwidth, fine granularity network

So that programs can be written with far less concern about how and when
communication takes place

" Latency-tolerant processors
So that compute capabilities do not go idle waiting for data, and
programmers do not have to stage data and computation
" Plentiful threading with efficient, lightweight synchronization

So that parallelism can be dynamically exploited at multiple levels in the
code, and programmers need to worry less about load balancing and
synchronization

" Adaptive processing capabilities

So that idioms that would benefit from vectorization, streaming, fine-grain
multithreading, or fast sequential processing can execute efficiently, and the
programmer does not have to change the code to fit the paradigm

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 5

A New Partnership

(intel"‘)] — PNy

@ Collaborative agreement to pursue high-end HPC technologies and

opportunities
Intel's world-class IC process and processor architecture
Cray’s strength in HPC architecture & large systems
Cray working with Intel on a new high-end processor

@ QOur strong partnership with AMD continues

™ Cray will continue to develop and upgrade our existing XT product line
past the end of the decade

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 6

Cray Cascade System
DARPA High Productivity Computing Systems

Scalable, High-Bandwidth Interconnect (Aries)

Granite Granite Granite Granite Granite Granite Viarble Jarble Jarble Aarble ascad ascad
Custom Custom Custom Custom Custom Custom x86 Xx86 Xx86 Xx86 x86

Compute @ Compute @l Compute [l Compute @ Compute @ Compute omput ompu ompu SIO SIO
Node Node Node Node Node Node Node Node Node ode Node Node

Globally Addressable Memory
i.Support for Partitioned Global Address Space(PGAS) and Distributed Global Address Space (DGAS) Data DIStI’IbUtIOI‘IS_.E

...

= Tightly integrated hybrid computing

= Configurable network, memory, processing and I/O

= Globally addressable memory

= Very high performance communication and synchronization

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 7

Cascade Packaging Overview

Granite or
Marble
Compute

Aries

network

Cascade Cabinet
Improved density and cooling over XT4
Common network with multiple blade types

Extensible over multiple years
LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 8

Cray Linux Environment
World’s Most Scalable Software System

“Primum non nocere” (First, do no harm)

= Microkernel on Compute Nodes, full
featured Linux on Service Nodes

= Service Nodes specialized by
function

N

= Software Architecture
Minimizes OS “Jitter”
+« Enables reproducible runtimes

Compute\/

<
Nod ' '
odes Service Nodes = Large machines boot in 15 to 30

. Compute Node minutes, including filesystem

Login Node = Fast job launch for hundreds of
. Network Node thousands of nodes

.System Node = High bandwidth Lustre filesystem

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 9

Cascade OS Architecture

Cascade Software

ALPS Services

External Network Clients
Cascade

Administration Tools

System
Distributed External Storage Clients Config,
c Boot
Senvicss Lustre Filesystem Clients Manager,
. &
Local Storage Clients Local Lustre External External Health
SStorgge File Storage Network Services
3 ervices — Service Services i
Cray Linux Services
Environment | Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux
with I/O with 1/0 with I/O with 1/0 Work
e L L Ly S L L L Ty R L L T S e L LTS o LTS ST =TT == __"% | Support | | Support Support Support Station
LBdISk _1 L_RdISk _1 LBdISk _1 L_RdISk _1 LBdISk _1 L_RdISk _1 LBdISk _1 LBdISk _1
System
Marble Marble Cascade| | Cascade| | Cascade| | Cascade| maintenance
x86 x86 x86 x86 x86 x86

Compute| | Compute SIO SIO SIO

Lustre Meta Data (SSD & Backing) —

orkstation
SIO

Configuration

Cascade Hardware Lustre Object Data —H s
Site Storage))
Site Infrastructure Site Network
LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 10

v
Some Very Large Systems from Cray

20> 50 > 119 -5 263 TF - ~1 PF

i .. ‘. dddd; A el LR e National .
£ P, : _ I3 _' :.- 2 I;:__- =-:._ [i ;I-'-_ ' & # E o i - ‘.— '- '- \\"‘l 1 ” '-..‘ ‘.__ iﬂhﬂmnﬂs

T =l T . 5 N

smmmm Ann —_— Sandia

40 —» 124 — 284 TFLOPS

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 11

e —— v
ORNL Petaflop System, 2H 2008

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 12

v
Cascade Programming Environment

Cascade Compiler

? i |
|

1 Chapel 1

: L o L L o o L o o o o o o o o o o oo) | Cray Debugger |

1 P . _—=—s=r===== NreETEETE=s rEEEEE= 1 r====== \r====° I

| Mogaraind 'LGMA | ! SHMEM ! | CAF i | OpenMP | — ! pthreads !l UPC || | PeniGEIEERIan cr |

I__________::::_'_'_'_'_'_'__::::__‘_'_‘_‘_‘_‘______________::::: _____________ "I [™Pr][chapel |[ALPS |

Cray Development Environment

Other Scientific MPI - Scientific Other I Tools: GCC. GDB |

|Job Control:PBSpro,LSF,MOAB |

Custom Enhanced Libraries COTS Enhanced Libraries COTS Environment
Custom Enhanced Runtime | COTS Enhanced Runtime COTS Standard Runtime
Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux

Cascade
x86
SIO

Cascade
x86
SIO

" COTS and Customized libraries and runtimes

" Common and emerging programming models supported across
processor types

" COTS and Cray Custom development environments

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 13

N — v
Key Areas of PE Productivity Enhancement

" Compilers
Incremental compilation, runtime profiling, improved user feedback

Fully automatic multi-level parallelism (shared memory, multi-
threading, vectorization)

" Programming Tools
Environment setup
Debugging
Performance Analysis

= Scientific Libraries

" Programming Languages
Support for traditional languages

Integrated support for UPC, CAF, OpenMP
Chapel

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 14

L — vl
Debugging in Cascade

" Support for traditional debugging mechanisms
TotalView, DDT, and gdb

= Comparative debugging
A data-centric paradigm rather than control-centric paradigm

Compare working application to failing application
» Simultaneous execution of both
» Comparison of computed results at key moments
» Focus on data — not state and internal operations
» Narrow down problem without massive thread study

Comparative debugging scenarios
» Serial converted to parallel
» Small scaling versus large scaling
» One optimization level versus another
» One programming language converted to another

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 15

Optimization with Traditional Performance Tools

i Cloart (8 828,53

[..:E.".:.;___.__ . - _ R e
.
P |
I

0 et ‘ = T
e L1 (1 1

z |

3

= :
o=y
== |
| 1) A =

[ifle Ll
Huge amount of =P | simple |=P> -
measurement analysis E
i -ven more
derived analysis

w \ da’ra//

9 -

Poor
User

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 16

Y
Automatic Performance Analysis in Cascade

™ Basic approach:
Intelligently collect and filter data
Distinguish between “similar” and “different” application behavior
Search data for inefficient execution patterns using performance models

" Automatically identify and expose performance anomalies
Load imbalance (MPIl and OpenMP)
Communication / synchronization / I/O problems
Environment variables
& Etc.

™ Support includes:
Automatic profiling analysis

» Automatically detects the most time consuming functions in the application

» Feeds information back to the tool for further (focused) data collection
Recomendation infrastructure in CrayPat

» E.g.: MPI rank placement suggestions (how ranks are mapped to cores)
Scalable performance visualizer

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 17

N — v
Math Software Productivity Enhancements

= Auto-tuning: use code generator and automatic tester to
develop codes
Cray Adaptive Sparse Kernels (CASK)

= Adaptivity: make offline and online decisions to choose

best kernel/library/routine
Cray Adaptive FFT (CRAFFT)
Cray Adaptive Sparse Kernels (CASK)

" Performance Enhancements:
Iterative Solver Performance

FFT performance
Fast libm

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 18

Chapel
A new parallel language developed by Cray for HPCS

Themes

= Raise level of abstraction, generality compared to SPMD approaches
= Support prototyping of parallel codes + evolution to production-grade
= Narrow gap between parallel and mainstream languages

Chapel’s Productivity Goals

= Vastly improve programmability over current languages/models
= Support performance that matches or beats MPI
= Improve portability over current languages/models (actuall

Status

= Draft language specification available |

= Portable prototype implementation underway
= Most effort has been focused on functionality and feature
= Early releases to ~40 users at ~20 sites (academic, gov
= Intend to do public release in late 2008

nt, industry)

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 19

Fortran+MPI 3D 27-point stencil (NAS MG rprj3)

subroutine comm3(u,n1,n2,n3,kk)
use caf_intrinsics

implicit none

include *cafnpb.h*

include "globals.h®

integer n1, n2, n3, kk
double precision u(nl,n2,n3)
integer axis

if(.not. dead(kk))then
do axis =1, 3
if(nprocs .ne. 1) then
call sync_al
u,
u,

u,
u,

. ni,

call zero3(u,n1,n2,n3)
endif

return

end

ni
nl

nl
nl

n:

subroutine give3(axis, dir, u, ni,

use caf_intrinsics

implicit none

include *cafnpb.h*
include "globals.h®

integer axis, dir, ni,
double precision u(ni,

n2, n3, k,
n2, n3)

integer i3, i2, il, buff_len,buff

id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do

buff(1:buff_len,
> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

n2-:
buff_| fen = buff_len +

buff(buff_len, buff_id) = u(n1-1,

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
D)

> buff(L:buff_len,buff_i

endif
endif

if(axis .eq. 2)then
TP dir eq. -1 Hthen
n3-1

N
buff_| fen = buff_len +

buff(buff_len, buff_id) = u(it,

ie

n2, n3, kk)
n2; n3, kk)

n2, n3)
n2, n3)

2, n3, Kk)

n2, n3, k)

rr

buff_id+1)[nbr(axis,dir,k)] =

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
id)

> buff(1=buff_len,buff_i

LACSS (Oct 2008)

i2,i3)

i2,i3)

2,i3)

>

>

else if(dir .eq. +1) then

1=1,n:
buff_len = buff_len + 1
buff(buff_len, buff_id)= uC i1,n2-1,i3)

enddo
enddo
buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
buff(1:buff_| Ien buff_id)
endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

1=1,n:
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,2)

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
buff(1:buff_ len: buff_id)

else if(dir .eq. +1) then

i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = uC i1,i2,n3-1)

enddo
enddo
buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
buFf(1:buff len,buff id)
endif

endif

return

end

subroutine take3(axis, dir, u, ni,
use caf_intrinsics

n2, n3)

implicit none

include *cafnpb.h*
include *globals.h*

integer axi
double precision u(ni,

ir, n1, n2, n3
n2, n3)

integer buff_id, indx

integer i3, i2, il

buff
indx = 0

=3 + dir

if(axis .eq. 1)then
if(dir .eq. -1)then

indx = indx + 1
u(nl,i2,i3) = buff(indx, buff_id)
o

else if(dir .eq. +1) then

,Nn3-1
2=2,n2-1

u(1,i2,i3) = buff(undx buff_id)
enddo
enddo

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

else if(dir .eq. +1) then

do §3=2,n3-1
do _il:l,nl

dx + 1
) = buff(indx, buff_id)

.eq. 3)then
“eq. -1)then

1
indx = indx + 1
u(il,i2,n3) = buff(indx, buff_id)

else if(dir .eq. +1) then
do i2=1,n2
do i1=1, nl
indx
u(il, i2 1) = buff(undx buff_id)

subroutine conmip(axis, u,
use caf_intrinsics

ni, n2, n3, kk)

impl

t none

include *cafnpb.h*
include *globals.h*

integer axi
double precision u(ni,

dir, n1, n2, n3
n2, n3)

integer i3, i2, il, buff_len,buff_id
integer i, Kk, indx

dir = -1

buff_id = 3 + dir
buff_len = nm2

do i=1,
bUFFCE s "t "_id) = 0.0D0
enddo
dir = +1
buff_id = 3 + dir
buff_len = nn2
do i=1,
bUFFCE s e -_id) = 0.000
enddo
dir = +1

buff_id = 2 + dir
buff_len = 0

.eq. 1)then
=2,n3-1

i2=2,n2-1
buff_ien = buff_len +
-, 3)buff(buff Ten, buff_ i) = u(ni-1,

if(axis .eq. 2)then
=2,n3-1

lo ,nl
buff_len = buff_len + 1
___buff(buff_len, buff_id)= u(il,n2-
1,i3)
enddo
enddo
endif

Copyright 2008 Cray Inc.

.eq. 3 then
n2

n
buff fen = buff_len +
buff(buff_len, buff_ i) = u(i1,i2,n3-

o
buff.

if(axis e 2 Hthen

[e] n1
buff_len = buff_len + 1
___buff(buff_len, buff_id) = u(i1,
2,i3)
enddo
enddo
endif

if(axis .eq. 3)then
do

buff_len = buff_len + 1
buff(buff_len, buff_id) = uC i1,i2,2)
enddo
enddo
endif

do i=1,nm2
buff(i,4)
buff(i,2)
enddo

dir = -1

buff_id = 3 + dir

.eq. 2)then
.n3-
=1,n1
dx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id)
enddo
enddo

endif

if(axis .eq. 3)then
do i

indx
u(il, iz, n3) = buff(lndx buff_id)
enddo
enddo
endif

dir = +1

buff_id = 3 + dir

u(1 i2, |3) = buff(lndx buff_id)
enddo
enddo
endif

2)then

iT(axis -eq.
i3

u(i1,1,i3) = buff(indx, buff_id)
enddo
enddo
endit
if(axis .eq. 3)then
do i2=1,n2
do il=1,n1
indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id)
enddo
enddo
endit

return
end

subroutine rprj3(r,mik,m2k,m3k,s,mij,m2j,m3j,k)

include *globals.h*
integer mik, m2k, m3k, mlj, m2j. m3j.k
double precision r(mik,m2k,n3k). s(mli.m2j.n3i)

integer j3, j2, ji, i3, i2, il, di, d2, d3, j
double pre n x1(m). yi(m), x2.y2

if(nik.eq.3)then
1=2

2 “§3- d3

i3+1)
-1,i2-1,i3+1)

v

i2, i3+1)

>))
> +0.25D0 * (r(|1 1,i2,i3) + r(il+l,i2,i3) + x2)
> +0.125D0 * (x1(il-1) + x1(il+l) + y2)
> +0.062500 * (yl(il-1) + yl(il+l))
enddo
enddo

enddo

Jo= k1

call comm3(s.mLj.n2j.m3j.j)

return

end

Slide 20

e —— v
NAS MG rprj3 stencil in Chapel

def rprj3(S, R) {
param Stencil = [-1..1, -1..1, -1..1],
w: [0..3] real = (0.5, 0.25, 0.125, 0.0625),
w3d = [(1,]3,k) In Stencil] w((i!=0) + (J!=0) + (k!'=0));

forall i1jk In S.domain do

S(1jk) = + reduce [offset in Stencil]
(w3d(offset) * R(ijk + R.stride*offset));

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 21

Chapel Code Size Comparison
For HPC Challenge Benchmarks

‘ Reference Yersion
@ Framework

1800

B Computation
1200 Chapsl Version
B Prob. Size (common)
§ 100G OResults and cutput
) 300 & BVerification
Inktlalization

O Kemel declarations
O Kemel computation

o !
faference Chapel Referance Chapal ftefarenca Chapsel
STREAM Random FFT
Triad Access

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 22

N —— v
More Chapel Information

" http://chapel.cs.washington.edu
" chapel info@cray.com

" Initial public open source release prior to SC '08
" Chapel tutorial at SC '08 (Sunday, 11/16)
" Part of PGAS tutorial at SC '08 (Monday, 11/17)

" Talk at Multicore Programmability Workshop at SC
'08 (Monday, 11/17)

" HPCC competition at SC '08

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 23

N — v
Acknowledgements

" This material is based upon work supported by the
Defense Advanced Research Projects Agency
under its Agreement No. HR0011-07-9-0001.

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 24

I
Thank you! Questions?

keith@cray.com

LACSS (Oct 2008) Copyright 2008 Cray Inc. Slide 25

