
Tools for Performance Modeling and
Optimization of Parallel Applications on

Future Supercomputers

Celso L. Mendes & Sanjay Kale
http://charm.cs.uiuc.edu

Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana-Champaign

2

Presentation Outline
• Introduction

– HPC Landscape
– PPL: mission and approach, programming methodology

• BigSim: Simulation of Large Systems
– BigSim organization
– BigSim application emulation
– BigSim simulation of target system

• Scalable Performance Analysis
– Performance data volume
– Selective data reduction

10/21/2008 210/21/2008 LACSS-2008

3

Introduction
• Current HPC Landscape

– Petascale era started; exascale not too far (DOE meetings 2007)
– Roadrunner@LANL (#1 in Top500):

• Linpack: 1.026 Pflops, Peak: 1.375 Pflops
– Heterogeneous systems starting to spread (Cell, GPUs, …)
– Processor counts in Top-500:

• #1 Roadrunner@LANL: 122K
• #2 BG/L@LLNL: 212K
• #3 BG/P@ANL: 163K

– Clear need for scalable tools

10/21/2008 310/21/2008 LACSS-2008

Parallel Programming Lab

410/21/2008 LACSS-2008

5

Parallel Programming Lab - PPL
• http://charm.cs.uiuc.edu
• One of the largest research groups at Illinois
• Currently:

– 1 faculty, 2 research scientists, 4 research programmers
– 12 grad students, 1 undergrad student
– Open positions ☺

10/21/2008

PPL, April’2008

510/21/2008 LACSS-2008

6

PPL Mission and Approach
• To enhance Performance and Productivity in

programming complex parallel applications
– Performance: scalable to thousands of processors
– Productivity: of human programmers
– Complex: irregular structure, dynamic variations

• Application-oriented yet CS-centered research
– Develop enabling technology, for a wide collection of apps.
– Embody it into easy to use abstractions
– Implementation: Charm++

• Object-oriented runtime infrastructure
• Freely available for non-commercial use (see BOF@SC08)

10/21/2008 610/21/2008 LACSS-2008

Application-Oriented Parallel Abstractions

NAMD Charm++

O
ther A

pplications

Issues

Techniques
& libraries

Synergy between Computer Science research and
applications has been beneficial to both

ChaNGa

LeanCP Space-time
meshing

Rocket Simulation

710/21/2008 LACSS-2008

Methodology: Migratable Objects

User View

System implementation

Programmer: [Over] decomposition
into objects (“virtual processes” - VPs)

Runtime: Assigns VPs to real
processors dynamically, during execution

Enables adaptive runtime strategies

Implementations: Charm++, AMPI

• Software engineering
– Number of virtual processes can

be independently controlled
– Separate VP sets for different

modules in an application
• Message driven execution

– Adaptive overlap of
computation/communication

• Dynamic mapping
– Heterogeneous clusters

• Vacate, adjust to speed, share
– Automatic checkpointing
– Change set of processors used
– Automatic dynamic load

balancing
– Communication optimization

Benefits of Virtualization

810/21/2008 LACSS-2008

Adaptive MPI (AMPI): MPI + Virtualization

• Each virtual process implemented as a user-level thread
embedded in a Charm++ object
– Must properly handle globals and statics (analogous to what’s needed in OpenMP)
– But… thread context-switch is much faster than other techniques

MPI
processes

Real Processors

MPI
“processes”

Implemented
as virtual
processes
(user-level
migratable
threads)

910/21/2008 LACSS-2008

BigSim Simulation System

1010/21/2008 LACSS-2008

Performance Tuning for Future Machines
• For example, Blue Waters will arrive in 2011

– But we need to prepare applications for it, starting now

• Even for existing machines:
– Full size machine may not be available as often as needed for

tuning runs

• BigSim: a simulation-based approach
– Based on Charm++ virtualization technique
– Full scale {application+system} simulation
– History: developed for BlueGene/C

• NSF/NGS grant 2001-2006

1110/21/2008 LACSS-2008

BigSim Simulation System
• Major BigSim features:

– Emphasis on bottleneck identification, not prediction accuracy
– Multi-resolution modeling for computation and communication
– Detailed network simulation, driven by application code

• General BigSim organization

1210/21/2008 LACSS-2008

BigSim Simulation System
• Typical BigSim usage:

– Phase 1: Program emulation – obtain execution logs
– Phase 2: Trace-driven simulation(s) – obtain predictions

• Can be repeated for different target machine configurations
– Phase 3: Performance analysis with Projections

• Envisioned use scenarios:

1310/21/2008

Phase-1 Phase-2 Phase-3

LACSS-2008

BigSim – Phase 1: Emulation
• BigSim Emulation:

– Run an existing, full-scale Charm++ or MPI application
– Uses an emulation layer in Charm++ that pretends to be the

target machine
• Target cores are emulated as Charm+ virtual processes

– Resulting execution logs:
• Recording of computation and communication activity
• Information stored:

– Characteristics of SEBs (Sequential Execution Blocks)
– Dependences between execution blocks and messages

1410/21/2008 LACSS-2008

BigSim – Emulation Challenges
• Memory issues:

– Applications with large memory footprints on target processor
may require a lot of memory space during emulation

– Virtual Memory (VM) might handle it, but not efficiently
• VM has no knowledge about underlying pieces

• BigSim approaches:
– Implicit memory emulation component

• Reuse (read-only) data across target processors
• May require application modification

– Out-of-Core emulation component
• Idea: keep in physical memory only a subset of target

processors; bring new target processors on demand

1510/21/2008 LACSS-2008

BigSim – Emulation Challenges (cont.)
• Out-of-Core Emulation Scheme:

– Because the emulation is run with Charm++, the Charm++
scheduler knows which piece(s) will be required next and
which pieces should be evicted from physical memory

1610/21/2008 LACSS-2008

BigSim – Emulation Challenges (cont.)
• Out-of-Core emulation status:

– Prototype version implemented, undergoing evaluation and
integration to BigSim distribution

– Number of resident target processors as large as allowed by
existing physical memory

– Slowdown in observed emulation performance is acceptable

• Planned Out-of-Core optimizations:
– Prefetch of target processors from disk
– Smarter eviction policies (currently only LRU)

1710/21/2008 LACSS-2008

BigSim – Phase 2: Simulation
• Trace-driven parallel simulation

– Parallel discrete event simulator
• Implemented as a Charm++ code

– Multiple resolution simulation of sequential execution:
• simple scaling factor between existing/target processors
• scaling based on performance counter data

– Perfex and PAPI supported

• modeling based on cycle-accurate simulators
– e.g. IBM’s Mambo

1810/21/2008 LACSS-2008

BigSim – Phase 2: Simulation
• Workflow with cycle-accurate simulator:

1910/21/2008

void func(p1,…)

{

StartBigSim(p1,…)

…

EndBigSim()

}

Mambo

BigSim
Parallel

Emulation

Cycle-accurate prediction
of sequential blocks on

POWER7 processor

Parameter files for
sequential blocks

Log files

Interpolation

Adjusted log files

Prediction
for

Target
System

+
Replace sequential timing

BigSim
Parallel

Simulation

LACSS-2008

BigSim – Phase 2: Simulation
• Interconnection Network Modeling

– Multiple resolution simulation of the Network:
• simple latency/bandwidth model
• detailed packet and switching port level modeling

– Flexible selection from a variety of:
• Topologies (Mesh, Torus, FatTree, …)
• Routing algorithms (static or adaptive)
• Input/Output virtual channel selection algorithms

– Implementation approach:
• Network layer constructs (NIC, swicth, node, etc): objects
• Network data constructs (message,packet,etc):event methods

– Network characterization:
• Source code, plus runtime configuration files

2010/21/2008 LACSS-2008

BigSim – Phase 2: Simulation
• Network Simulation Output (NAMD-apoa1, 15 steps)

– Link Utilization

2110/21/2008 LACSS-2008

BigSim Validation: BG/L Predictions

NAMD Apoa1

0

20

40

60

80

128 256 512 1024 2250

number of processors simulated

tim
e

(s
ec

on
ds

)

Actual
execution
time
predicted
time

2210/21/2008

Simulations run on 8 processors, simple network model:

LACSS-2008

BigSim – Simulation Challenges
• Improved Scalability

– More efficient handling of log files
– Load balancing of simulation
– Smarter memory management and optimized communication

• New enhancements planned
– New strategies and algorithms for networks
– Ports to BG/P and Cray-XT/4 for running simulation
– Network fault simulation

2310/21/2008 LACSS-2008

BigSim – Phase 3: Analysis
• Phase 3: Analyze performance

– BigSim can produce Projections-compatible data
• Simulation data can be analyzed by the same tools used for

data obtained on real machines (e.g. Projections)

2410/21/2008 LACSS-2008

Scalable Performance Analysis

2510/21/2008 LACSS-2008

Scalable Performance Analysis
• Scaling and performance data volumes

– Both weak scaling and strong scaling lead to performance data
volume growth

– Example: Performance data from NAMD on 200 iterations

– Obvious conclusion: tools must also scale to deal with this
growth

2610/21/2008 LACSS-2008

92k Atoms 327k Atoms 1000k Atoms
512 cores 827 MB 1,800 MB 2,800 MB
1024 cores 938 MB 2,200 MB 3,900 MB
2048 cores 1,200 MB 2,800 MB 4,800 MB
4096 cores 5,700 MB

Weak ScalingStrong Scaling

Scalable Performance Analysis
• Our Approach:

– Retain full traces of a reduced number of processors
– Keep summaries for remaining processors
– Select “interesting” processors based on observed data
– Criteria for processor selection:

• Cluster the observed data into equivalence classes,
according to some metric(s)

• Pick “representatives” and “outliers” from each class based
on a certain threshold

• Initial implementation: k-means clustering
– Details in HIPS paper @ IPDPS’08

2710/21/2008 LACSS-2008

Scalable Performance Analysis
• Schematic representation:

2810/21/2008 LACSS-2008

Metric X

Euclidean Distance

Outliers

Representatives

Scalable Performance Analysis
• Several factors to consider:

– Which metrics to use
– Metrics may require normalization
– Whether there is correlation between metrics
– Number of clusters
– Placement of initial seeds
– Number of representatives chosen
– Number of outliers chosen

2910/21/2008 LACSS-2008

Scalable Performance Analysis
• Preliminary Evaluation:

– NAMD executions at PSC’s Cray XT-3, 1 million atoms
– Roll-back to 2002 code version that had a grain-size problem
– Histograms of NAMD method durations in Projections:

– Experiment goal: compare histograms obtained with full data
and with reduced-processor data, for the 2002 code execution

3010/21/2008 LACSS-2008

Tuned NAMD Problem Injected

Scalable Performance Analysis

3110/21/2008 LACSS-2008

Data reduction after keeping data from 10% of processors:

Scalable Performance Analysis
• Quality of data reduction:

3210/21/2008 LACSS-2008

Bariorig… … Barireduced… …

Original Data: 1000 procs

Reduced Data: 100 procs
Ho

i

Hr
i

How close is Hr
i/Ho

i

to 0.100 on average?
How close is Hr

i/Ho
i

to 0.100 on average?

Scalable Performance Analysis
• Resulting quality of data (for 5%,10%,20%)

3310/21/2008 LACSS-2008

Po Pr Pr/Po Average H Std Dev

512
25 0.0488 0.0641 0.00732
51 0.0996 0.1180 0.00768
102 0.1992 0.2237 0.00732

1024
51 0.0498 0.0511 0.00168
102 0.0996 0.1008 0.00157
204 0.1992 0.1921 0.00264

2048
102 0.0498 0.0487 0.00122
204 0.0996 0.0977 0.00216
408 0.1992 0.1883 0.00575

4096
204 0.0498 0.0501 0.00170
409 0.0998 0.0981 0.00203
818 0.1997 0.1975 0.00163

Scalable Performance Analysis
• Ongoing work:

– Analyzing effects from each factor
– Looking at other clustering alternatives
– Extending tests to other codes
– Applying same scheme to MPI codes

• Current integration to Projections
– Basic features:

• Processors with max/min metric values
• Averages across processors for various metrics
• K% processors most distant from average

3410/21/2008 LACSS-2008

35

Summary
• Our scalable tools:

– BigSim: simulation of large systems (sequential & network)
– Projections: performance data handling
– Both leverage Charm++ and its virtualization approach
– Software distribution: http://charm.cs.uiuc.edu

• Our sponsors:
– NSF, Dep. Energy, NIH, NCSA/NSF, Nasa

10/21/2008 3510/21/2008 LACSS-2008

Thank You !

3610/21/2008 LACSS-2008

