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Introduction

 Software engineering is an engineering discipline

 We need to understand products, processes, and the 
relationship between them (we assume there is one)

 We need to conduct human-based studies (case 
studies and experiments)

 We need to package (model) that knowledge for use 
and evolution

 Recognizing these needs changes how we think, what 
we do, what is important, and the nature of the 
discipline 
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Empirical Studies

 The empirical paradigm has been used in many 
other fields, e.g. physics, medicine, manufacturing
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High Productivity Computing Systems (HPCS)

 Problem: How do you build sufficient knowledge about high 
end computing (HEC) so you can improve the time and cost 
of developing these codes?

 Project Goal: Improve the buyer’s ability to select the high 
end computer for the problems to be solved based upon 
productivity, where productivity means 

Time to Solution = Development Time + Execution Time

 Research Goal: Develop theories, hypotheses, and guidelines 
that allow us to characterize, evaluate, predict and improve 
how an HPC environment (hardware, software, human) 
affects the development of high end computing codes. 

 Partners: MIT Lincoln Labs,  MIT, MSU, UCSD, UCSB, UCSD, 
UH, UMD, UNL, USC, FC-MD, ISU
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Areas of Study
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Types of HPCS Studies
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Controlled experiments
Study programming in the small 

under controlled conditions to:

Identify key variables, check out 

methods for data collection, get 

professors interested in 

empiricism

E.g., compare effort required to 

develop code in MPI vs. 

OpenMP

Observational studies 
Characterize in detail a realistic 

programming problem in realistic 

conditions to:

validate data collection tools and 

processes

E.g., build an accurate effort data 

model

Case studies and field 

studies
Study programming in the large 

under typical conditions

E.g., understand multi-

programmer development 

workflow

Surveys, interviews & 

focus groups
Collect “folklore” from 

practitioners in government, 

industry and academia

e.g., generate hypotheses to test 

in experiments and case studies



Current Study

 Environment

 Computational Science and Engineering projects

 Goals

 Understand and document software development 
practices 

 Gather initial information about what practices 
are effective / ineffective

 Approach

 Series of retrospective case studies
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Case Study Methodology

Identify a Project
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Projects Studied:
FALCON

10

GOAL: Develop a predictive capability for a product whose performance 

involves complex physics to reduce the dependence of the sponsor on 

expensive and dangerous tests.

LANGUAGE: OO-FORTRAN

TARGET PLATFORM: 

• Shared-memory LINUX cluster 

(~2000 nodes) 

• Vendor-specific shared-memory 

cluster (~1000 nodes)

USERS: External; highly 

knowledgeable product 

engineers

DURATION: ~10 years

STAFFING: 15 FTEs CODE SIZE: ~405 KSLOC

Post, 2005



Projects Studied:
HAWK
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GOAL: Develop a computationally predictive capability to analyze the 

manufacturing process allowing the sponsor to minimize the use of time-

consuming expensive prototypes for ensuring efficient product fabrication.

LANGUAGE: C++ (67%); C 

(18%); FORTRAN90/Python 

(15%)

TARGET PLATFORM: 

• SGI (Origin 3900)

• Linux Networx (Evolocity Cluster)

• IBM (P-Series 690 SP)

• Intel-based Windows platforms

USERS: Internal and 

external product 

engineers; small number

DURATION: ~ 6 Years

STAFFING: 3 FTEs CODE SIZE: ~134 KSLOC

Kendall, 2005a



Projects Studied:
CONDOR
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LANGUAGE: FORTRAN77 

(85%)

TARGET PLATFORM: 

• PC – running 106 cells for a few 

hours to a few days (average)

• Parallel application – 108 cells on 

100 to a few 100s of processors

USERS: Internal and 

external; several thousand 

occasional users; hundreds 

of routine users

GOAL: Develop a simulation to analyze the behavior of a family of 

materials under extreme stress allowing the sponsor to minimize the use of 

time-consuming expensive and infeasible testing.

CODE SIZE: ~200 KSLOC

DURATION: ~ 20 Years

STAFFING: 3-5 FTEs

Kendall, 2005b



Projects Studied:
EAGLE

13

LANGUAGE: C++

TARGET PLATFORM: 

• Specialized computer that can be 

deployed on military platforms

• Developed on – SUN Sparcs

(Solaris) and PC (Linux)

USERS: Demonstration 

project – no users

GOAL: Determine if parallel, real-time processing of sensor data is 

feasible on a specific piece of HPC hardware deployed in the field

CODE SIZE: < 100 KSLOC

DURATION: ~ 3 Years

STAFFING: 3 FTEs

Kendall, 2006



Projects Studied:
NENE
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GOAL: Calculate the properties of molecules using a variety of computational 

quantum mechanical models

LANGUAGE: FORTRAN77 

subset of FORTRAN90

TARGET PLATFORM: 

All commonly used platforms 

except Windows-based PCs

USERS: 200,000 

installations and 

estimated 100,000 users

CODE SIZE: 750 KSLOC

DURATION: ~25 Years

STAFFING: ~10 FTEs

(Thousands of 

contributors)



Projects Studied:
OSPREY
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GOAL: One component of a large weather forecasting suite that combines 

the interactions of large-scale atmospheric models with large-scale 

oceanographic models.

LANGUAGE: FORTRAN

TARGET PLATFORM: SGI, 

IBM, HP, and Linux

USERS: Hundreds of 

installations – some have 

hundreds of users

CODE SIZE: 150 KLOC 

(50 KLOC Comments)

DURATION: ~10 years 

(predecessor > 25 years)

STAFFING: ~10 FTEs

Kendall, 2008



Projects Studied:
Summary
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FALCON HAWK CONDOR EAGLE NENE OSPREY

Application 
Domain

Product 
Performance

Manufacturing
Product 

Performance
Signal Processing Process Modeling Weather Forecasting

Duration ~ 10 years ~ 6 years ~ 20 years ~ 3 years ~ 25 years ~10 years

# of Releases 9 (production) 1 7 1 ? ?

Staffing 15 FTEs 3 FTEs 3-5 FTEs 3 FTEs
~10 FTEs (100’s of 

contributors)
~10 FTEs

Customers < 50 10s 100s None ~ 100,000 100s

Code Size ~ 405,000 LOC ~ 134,000 LOC ~200,000 LOC < 100,000 LOC 750,000 LOC 150,000 LOC

Primary 
Languages

F77 (24%),
C (12%)

C++ (67%),
C (18%)

F77 (85%)
C++,
Matlab

F77 (95%) Fortran

Other 
Languages

F90, Python, Perl, 
ksh/csh/sh

Python, F90 F90, C, Slang Java Libraries C C

Target 
Hardware

Parallel 
Supercomputer

Parallel 
Supercomputer

PCs to Parallel 
Supercomputer

Embedded 
Hardware

PCs to Parallel 
Supercomputer

Parallel Supercomputer



Lessons Learned



Lessons Learned:
Validation and Verification

Validation

• Does the software correctly capture the laws of nature?

• Hard to establish the correct output of simulations a priori

• Exploring new science

• Inability to perform experimental replications

Verification

• Does the application accurately solve the equations of the 
solution algorithm?

• Difficult to identify problem source

• Creation of mathematical model by domain expert

• Translation of mathematical model into algorithm(s)

• Implementation of algorithms in software
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Lessons Learned:
Validation and Verification

 Implications
 Traditional methods of testing software then 

comparing the output to expected results are not 
sufficient

 These developers need additional methods to 
ensure quality and limits of software
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I have tried to position CONDOR to the place where it is kind 

of like your trusty calculator – it is an easy tool to use. Unlike 

your calculator, it is only 90% accurate … you have to 

understand that then answer you are going to get is going to 

have a certain level of uncertainty in it. The neat thing about it 

is that it is easy to get an answer in the general sense <to a 

very difficult problem>.



Lessons Learned:
Language Stability

 Long project lifecycles require code that is:
 Portable 
 Maintainable

 FORTRAN
 Easier for scientists to learn than C++
 Produces code that performs well on large-scale 

supercomputers

 Users of the code interact frequently with the code

 Implications
 FORTRAN will dominate for the near future
 New languages have to have benefits of FORTRAN plus 

some additional benefits to be accepted

20



Lessons Learned:
Use of Higher-Level Languages

 Implications
 These developers place more constraints on the language 

that traditional IT developers
 A language has to

 Be easy to learn
 Offer reasonably high performance
 Exhibit stability
 Give developers confidence in output of compiler
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I’d rather be closer to machine language than more abstract. I know even 

when I give very simple instructions to the compiler, it doesn’t necessarily 

give me machine code that corresponds to that set of instructions. If this 

happens with a simple do-loop in FORTRAN, what happens with a monster 

object-oriented thing?

•MATLAB 

•Code is not efficient or fast enough

•Used for prototyping

•C++

•Used by some newer teams

•Mostly used the C subset of C++



Lessons Learned:
Development Environments

 Developers prefer flexibility of the command line over 
an Integrated Development Environment (IDE). They 
believe that:
 IDEs impose too much rigidity
 They are more efficient when typing commands than when 

navigating menus

 Implications – developers do not adopt IDEs because:
 They do not trust the IDE to automatically perform a task 

in the same way they would do it manually
 They expect greater flexibility than is currently provided
 Prefer to use what they know rather than change
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They all [the IDEs] try to impose a particular style of development on me 

and I am forced into a particular mode



Lessons Learned:
External Software

 Projects view external software as a risk
 Long duration
 Fear that software may disappear or become unsupported
 Prefer to develop tools in-house or use open-source

 Exception – NENE
 Employed a librarian to thoroughly test code before 

integrating into code base
 Designed the project so that it was not dependent on 

external software to meet its commitments

 Implication - Tool problem
 Very few quality tools for this environment
 Catch-22 situation
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Lessons Learned:
Development Goals

 Multiple goals are important
 Performance – software is used on supercomputer

 Portability and Maintainability – platforms change 
multiple times during a project

 Success of a project depends on the ability to port 
software to new machines

 Implications
 The motivation for these projects may be different 

than for traditional IT projects

 Methods must be chosen and tailored to align with 
the overall project goals
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Lessons Learned:
Agile vs. Traditional Methodologies

 “Agile” refers to the philosophical approach rather 
than to any particular Agile method

 Projects are often doing new science, so the 
requirements cannot be known upfront

 Teams have been operating with an agile philosophy 
before they even knew what it was – favoring 
individuals and good practices over rigid processes 
and tools

 Implications
 Existing SE methodologies need to be tailored for this 

community
 Rigid, process-heavy approaches are not used; both for 

technical and cultural reasons
25



Lessons Learned:
Team Composition

 Complex problems and domains
 Too difficult for most software engineers to understand 

quickly
 Easier to teach domain scientists/engineers how to program

 Software engineers help with performance and flexibility

 Implication
 Multi-disciplinary teams are important
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In these types of high performance, scalable computing [applications], in 

addition to the physics and mathematics, computer science plays a very 

major role. Especially when looking at optimization, memory 

management and making [the code] perform better … You need a multi-

disciplinary team. It [C++] is not a trivial language to deal with … You 

need an equal mixture of subject theory, the actual physics, and 

technology expertise.



Lessons Learned:
Key to Success

 Keeping customers (and sponsors) satisfied

 Lesson not unique to this community, but some 
constraints are important
 Funding may come from one agency, while customers 

are members of another agency
 Success depends on keeping both groups happy
 HAWK project was suspended due to lack of customer 

support, even though it was a technical success for 
the funding agency

 Implication
 Balancing the needs of these various stakeholders can 

be challenging
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Summary

 Six case studies of computational science and 
engineering software 
 Projects sponsored by the US Federal Government and the 

National Science Foundation
 Different domains and different goals

 Nine lessons learned about the programming 
environment drawn across all studies

 Contributions
 For the software engineering community

 Highlighted some reasons why the development process is 
different for this type of software

 Provided insight into why traditional SE approaches are not used 

 For the computational science and engineering community
 Provided ideas to guide the improvement of the software 

engineering process
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Collaborators

 Doug Post - HPCMP

 Richard Kendall – SEI

 Dale Henderson – Los Alamos (retired)

 Andrew Mark – HPCMP

 David Fisher – HPCMP

 Clifford Rhoades, Jr. – Maui HPC Center

 Susan Squires – Tactics (formally with 
SUN)

 Christine Halverson - IBM
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For More Information

 IEEE Software special issue – Developing Scientific 
Software (July/August 2008)

 Carver, et al. “Software Development 
Environments for Scientific and Engineering 
Software: A Series of Case Studies.” ICSE 2007

 ICSE workshops
 Software Engineering for HPC Applications (2004-

2005, 2007)
 Software Engineering for Computational Science 

(2008) 
 Forthcoming news article in CiSE (March/April)

 2009 workshop proposed
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Thank You!
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