
Software Development Environments for
Scientific and Engineering Software:

A Series of Case Studies

Jeffrey C. Carver

University of Alabama

Los Alamos Computer Science Symposium

October 15, 2008

Outline

 Introduction
 Software Engineering
 HPCS project

 Methodology
 Process
 Projects Studied

 Results
 Lessons Learned
 Summary

2

Introduction

 Software engineering is an engineering discipline

 We need to understand products, processes, and the
relationship between them (we assume there is one)

 We need to conduct human-based studies (case
studies and experiments)

 We need to package (model) that knowledge for use
and evolution

 Recognizing these needs changes how we think, what
we do, what is important, and the nature of the
discipline

3

Empirical Studies

 The empirical paradigm has been used in many
other fields, e.g. physics, medicine, manufacturing

4

Understanding a
Discipline

Building
Models

application domain,
workflows,

problem solving
processes

Checking
Understanding

testing models,
experimenting in the

real world

Analyzing
Results

learn,
encapsulate
knowledge

and refine models

Evolving
Models

High Productivity Computing Systems (HPCS)

 Problem: How do you build sufficient knowledge about high
end computing (HEC) so you can improve the time and cost
of developing these codes?

 Project Goal: Improve the buyer’s ability to select the high
end computer for the problems to be solved based upon
productivity, where productivity means

Time to Solution = Development Time + Execution Time

 Research Goal: Develop theories, hypotheses, and guidelines
that allow us to characterize, evaluate, predict and improve
how an HPC environment (hardware, software, human)
affects the development of high end computing codes.

 Partners: MIT Lincoln Labs, MIT, MSU, UCSD, UCSB, UCSD,
UH, UMD, UNL, USC, FC-MD, ISU

5

Areas of Study

6

Defects
Process flow/

Techniques
Effort

ToolsPerformance
Programming

models

Environment/Hardware

Users/Developers

Cost & benefit, relationships, context variables, predictive models, tradeoffs

Types of HPCS Studies

7

Controlled experiments
Study programming in the small

under controlled conditions to:

Identify key variables, check out

methods for data collection, get

professors interested in

empiricism

E.g., compare effort required to

develop code in MPI vs.

OpenMP

Observational studies
Characterize in detail a realistic

programming problem in realistic

conditions to:

validate data collection tools and

processes

E.g., build an accurate effort data

model

Case studies and field

studies
Study programming in the large

under typical conditions

E.g., understand multi-

programmer development

workflow

Surveys, interviews &

focus groups
Collect “folklore” from

practitioners in government,

industry and academia

e.g., generate hypotheses to test

in experiments and case studies

Current Study

 Environment

 Computational Science and Engineering projects

 Goals

 Understand and document software development
practices

 Gather initial information about what practices
are effective / ineffective

 Approach

 Series of retrospective case studies
8

Case Study Methodology

Identify a Project

Negotiate
Participation with

Team and
Sponsor

Conduct Pre-
Interview Survey

Analyze Survey
Responses and
Plan On-Site

Interview

Conduct On-Site
Interview

Analyze On-Site
Interview and
Integrate with

Survey

Follow-up with
Team to Resolve

Issues

Draft Report and
Iterate with Team

and Sponsor
Publish Report

9

Projects Studied:
FALCON

10

GOAL: Develop a predictive capability for a product whose performance

involves complex physics to reduce the dependence of the sponsor on

expensive and dangerous tests.

LANGUAGE: OO-FORTRAN

TARGET PLATFORM:

• Shared-memory LINUX cluster

(~2000 nodes)

• Vendor-specific shared-memory

cluster (~1000 nodes)

USERS: External; highly

knowledgeable product

engineers

DURATION: ~10 years

STAFFING: 15 FTEs CODE SIZE: ~405 KSLOC

Post, 2005

Projects Studied:
HAWK

11

GOAL: Develop a computationally predictive capability to analyze the

manufacturing process allowing the sponsor to minimize the use of time-

consuming expensive prototypes for ensuring efficient product fabrication.

LANGUAGE: C++ (67%); C

(18%); FORTRAN90/Python

(15%)

TARGET PLATFORM:

• SGI (Origin 3900)

• Linux Networx (Evolocity Cluster)

• IBM (P-Series 690 SP)

• Intel-based Windows platforms

USERS: Internal and

external product

engineers; small number

DURATION: ~ 6 Years

STAFFING: 3 FTEs CODE SIZE: ~134 KSLOC

Kendall, 2005a

Projects Studied:
CONDOR

12

LANGUAGE: FORTRAN77

(85%)

TARGET PLATFORM:

• PC – running 106 cells for a few

hours to a few days (average)

• Parallel application – 108 cells on

100 to a few 100s of processors

USERS: Internal and

external; several thousand

occasional users; hundreds

of routine users

GOAL: Develop a simulation to analyze the behavior of a family of

materials under extreme stress allowing the sponsor to minimize the use of

time-consuming expensive and infeasible testing.

CODE SIZE: ~200 KSLOC

DURATION: ~ 20 Years

STAFFING: 3-5 FTEs

Kendall, 2005b

Projects Studied:
EAGLE

13

LANGUAGE: C++

TARGET PLATFORM:

• Specialized computer that can be

deployed on military platforms

• Developed on – SUN Sparcs

(Solaris) and PC (Linux)

USERS: Demonstration

project – no users

GOAL: Determine if parallel, real-time processing of sensor data is

feasible on a specific piece of HPC hardware deployed in the field

CODE SIZE: < 100 KSLOC

DURATION: ~ 3 Years

STAFFING: 3 FTEs

Kendall, 2006

Projects Studied:
NENE

14

GOAL: Calculate the properties of molecules using a variety of computational

quantum mechanical models

LANGUAGE: FORTRAN77

subset of FORTRAN90

TARGET PLATFORM:

All commonly used platforms

except Windows-based PCs

USERS: 200,000

installations and

estimated 100,000 users

CODE SIZE: 750 KSLOC

DURATION: ~25 Years

STAFFING: ~10 FTEs

(Thousands of

contributors)

Projects Studied:
OSPREY

15

GOAL: One component of a large weather forecasting suite that combines

the interactions of large-scale atmospheric models with large-scale

oceanographic models.

LANGUAGE: FORTRAN

TARGET PLATFORM: SGI,

IBM, HP, and Linux

USERS: Hundreds of

installations – some have

hundreds of users

CODE SIZE: 150 KLOC

(50 KLOC Comments)

DURATION: ~10 years

(predecessor > 25 years)

STAFFING: ~10 FTEs

Kendall, 2008

Projects Studied:
Summary

16

FALCON HAWK CONDOR EAGLE NENE OSPREY

Application
Domain

Product
Performance

Manufacturing
Product

Performance
Signal Processing Process Modeling Weather Forecasting

Duration ~ 10 years ~ 6 years ~ 20 years ~ 3 years ~ 25 years ~10 years

of Releases 9 (production) 1 7 1 ? ?

Staffing 15 FTEs 3 FTEs 3-5 FTEs 3 FTEs
~10 FTEs (100’s of

contributors)
~10 FTEs

Customers < 50 10s 100s None ~ 100,000 100s

Code Size ~ 405,000 LOC ~ 134,000 LOC ~200,000 LOC < 100,000 LOC 750,000 LOC 150,000 LOC

Primary
Languages

F77 (24%),
C (12%)

C++ (67%),
C (18%)

F77 (85%)
C++,
Matlab

F77 (95%) Fortran

Other
Languages

F90, Python, Perl,
ksh/csh/sh

Python, F90 F90, C, Slang Java Libraries C C

Target
Hardware

Parallel
Supercomputer

Parallel
Supercomputer

PCs to Parallel
Supercomputer

Embedded
Hardware

PCs to Parallel
Supercomputer

Parallel Supercomputer

Lessons Learned

Lessons Learned:
Validation and Verification

Validation

• Does the software correctly capture the laws of nature?

• Hard to establish the correct output of simulations a priori

• Exploring new science

• Inability to perform experimental replications

Verification

• Does the application accurately solve the equations of the
solution algorithm?

• Difficult to identify problem source

• Creation of mathematical model by domain expert

• Translation of mathematical model into algorithm(s)

• Implementation of algorithms in software

18

Lessons Learned:
Validation and Verification

 Implications
 Traditional methods of testing software then

comparing the output to expected results are not
sufficient

 These developers need additional methods to
ensure quality and limits of software

19

I have tried to position CONDOR to the place where it is kind

of like your trusty calculator – it is an easy tool to use. Unlike

your calculator, it is only 90% accurate … you have to

understand that then answer you are going to get is going to

have a certain level of uncertainty in it. The neat thing about it

is that it is easy to get an answer in the general sense <to a

very difficult problem>.

Lessons Learned:
Language Stability

 Long project lifecycles require code that is:
 Portable
 Maintainable

 FORTRAN
 Easier for scientists to learn than C++
 Produces code that performs well on large-scale

supercomputers

 Users of the code interact frequently with the code

 Implications
 FORTRAN will dominate for the near future
 New languages have to have benefits of FORTRAN plus

some additional benefits to be accepted

20

Lessons Learned:
Use of Higher-Level Languages

 Implications
 These developers place more constraints on the language

that traditional IT developers
 A language has to

 Be easy to learn
 Offer reasonably high performance
 Exhibit stability
 Give developers confidence in output of compiler

21

I’d rather be closer to machine language than more abstract. I know even

when I give very simple instructions to the compiler, it doesn’t necessarily

give me machine code that corresponds to that set of instructions. If this

happens with a simple do-loop in FORTRAN, what happens with a monster

object-oriented thing?

•MATLAB

•Code is not efficient or fast enough

•Used for prototyping

•C++

•Used by some newer teams

•Mostly used the C subset of C++

Lessons Learned:
Development Environments

 Developers prefer flexibility of the command line over
an Integrated Development Environment (IDE). They
believe that:
 IDEs impose too much rigidity
 They are more efficient when typing commands than when

navigating menus

 Implications – developers do not adopt IDEs because:
 They do not trust the IDE to automatically perform a task

in the same way they would do it manually
 They expect greater flexibility than is currently provided
 Prefer to use what they know rather than change

22

They all [the IDEs] try to impose a particular style of development on me

and I am forced into a particular mode

Lessons Learned:
External Software

 Projects view external software as a risk
 Long duration
 Fear that software may disappear or become unsupported
 Prefer to develop tools in-house or use open-source

 Exception – NENE
 Employed a librarian to thoroughly test code before

integrating into code base
 Designed the project so that it was not dependent on

external software to meet its commitments

 Implication - Tool problem
 Very few quality tools for this environment
 Catch-22 situation

23

Lessons Learned:
Development Goals

 Multiple goals are important
 Performance – software is used on supercomputer

 Portability and Maintainability – platforms change
multiple times during a project

 Success of a project depends on the ability to port
software to new machines

 Implications
 The motivation for these projects may be different

than for traditional IT projects

 Methods must be chosen and tailored to align with
the overall project goals

24

Lessons Learned:
Agile vs. Traditional Methodologies

 “Agile” refers to the philosophical approach rather
than to any particular Agile method

 Projects are often doing new science, so the
requirements cannot be known upfront

 Teams have been operating with an agile philosophy
before they even knew what it was – favoring
individuals and good practices over rigid processes
and tools

 Implications
 Existing SE methodologies need to be tailored for this

community
 Rigid, process-heavy approaches are not used; both for

technical and cultural reasons
25

Lessons Learned:
Team Composition

 Complex problems and domains
 Too difficult for most software engineers to understand

quickly
 Easier to teach domain scientists/engineers how to program

 Software engineers help with performance and flexibility

 Implication
 Multi-disciplinary teams are important

26

In these types of high performance, scalable computing [applications], in

addition to the physics and mathematics, computer science plays a very

major role. Especially when looking at optimization, memory

management and making [the code] perform better … You need a multi-

disciplinary team. It [C++] is not a trivial language to deal with … You

need an equal mixture of subject theory, the actual physics, and

technology expertise.

Lessons Learned:
Key to Success

 Keeping customers (and sponsors) satisfied

 Lesson not unique to this community, but some
constraints are important
 Funding may come from one agency, while customers

are members of another agency
 Success depends on keeping both groups happy
 HAWK project was suspended due to lack of customer

support, even though it was a technical success for
the funding agency

 Implication
 Balancing the needs of these various stakeholders can

be challenging

27

Summary

 Six case studies of computational science and
engineering software
 Projects sponsored by the US Federal Government and the

National Science Foundation
 Different domains and different goals

 Nine lessons learned about the programming
environment drawn across all studies

 Contributions
 For the software engineering community

 Highlighted some reasons why the development process is
different for this type of software

 Provided insight into why traditional SE approaches are not used

 For the computational science and engineering community
 Provided ideas to guide the improvement of the software

engineering process
28

Collaborators

 Doug Post - HPCMP

 Richard Kendall – SEI

 Dale Henderson – Los Alamos (retired)

 Andrew Mark – HPCMP

 David Fisher – HPCMP

 Clifford Rhoades, Jr. – Maui HPC Center

 Susan Squires – Tactics (formally with
SUN)

 Christine Halverson - IBM

29

For More Information

 IEEE Software special issue – Developing Scientific
Software (July/August 2008)

 Carver, et al. “Software Development
Environments for Scientific and Engineering
Software: A Series of Case Studies.” ICSE 2007

 ICSE workshops
 Software Engineering for HPC Applications (2004-

2005, 2007)
 Software Engineering for Computational Science

(2008)
 Forthcoming news article in CiSE (March/April)

 2009 workshop proposed

30

Selected References

 Carver, J., Kendall, R., Squires, S. and Post, D. “Software Development Environments for
Scientific and Engineering Software: A Series of Case Studies." Proceedings of the 29th
International Conference on Software Engineering. Minneapolis, USA. May 23-25, 2007. p.
550-559.

 Kendall, R., Carver, J., Fisher, D., Henderson, D., Mark, A., Post, D., Rhoades, C. and
Squires, S. “Development of a Weather Forecasting Code: A Case Study." IEEE Software,
July/August 2008. p. 59-65.

 Kendall, R., Post, D., Carver, J., and Squires, S. "Case Study of the Eagle Code Project."
Los Alamos Technical Report, LA-UR-06-1092. 2006.

 Kendall, R., Carver, J., Mark, A., Post, D., Squires, S., and Shaffer, D. "Case Study of the
Hawk Code Project." Los Alamos Technical Report, LA-UR-05-9011. 2005.

 Kendall, R.P., Mark, A., Post, D., Squires, S., and Halverson, C. Case Study of the Condor
Code Project. Technical Report, LA-UR-05-9291. Los Alamos National Laboratories: 2005.

 Post, D.E., Kendall, R.P., and Whitney, E. "Case study of the Falcon Project". Proceedings
of Second International Workshop on Software Engineering for High Performance
Computing Systems Applications (Held at ICSE 2005). St. Louis, USA. 2005. p. 22-26

31

Thank You!

32

Jeffrey Carver

University of Alabama

carver@cs.ua.edu

Software Development Environments for
Scientific and Engineering Software:

A Series of Case Studies

