
Accurate Prediction of
Soft Error Vulnerability of

Scientific Applications

Greg Bronevetsky
Post-doctoral Fellow

Lawrence Livermore National Lab

Soft error: one-time corruption of
system state

• Examples: Memory bit-flips, erroneous
computations

• Caused by
– Chip variability
– Charged particles passing through transistors

• Decay of packaging materials (Lead208, Boron10)
• Fission due to cosmic neutrons

– Temperature, power fluctuations

Soft errors are a critical reliability
challenge for supercomputers

• Real Machines:
– ASCI Q: 26 radiation-induced errors/week
– Similar-size Cray XD1: 109 errors/week

(estimated)
– BlueGene/L: 3-4 L1 cache bit flips/day

• Problem grows worse with time
– Larger machines ⇒ larger error probability
– SRAMs growing exponentially more

vulnerable per chip

We must understand the impact of soft
errors on applications

• Soft errors corrupt application state
• May lead to crashes or
• Need to detect/tolerate soft errors

– State of the art: checkers/correctors for
individual algorithms

– No general solution
• Must first understand how errors affect

applications
– Identify problem
– Focus efforts

corrupt output

Prior work says very little about most
applications

• Prior fault analysis work focuses on
injecting errors into individual applications
– [Lu and Reed, SC04]: Linux + MPICH +

Cactus, NAMD, CAM
– [Messer et al, ICSDN00]: Linux + Apache and

Linux + Java (Jess, DB, Javac, Jack)
– [Some et al, AC02]: Lynx + Mars texture

segmentation application
…

• Where’s my application?

Extending vulnerability
characterization to more applications
• Goal: general purpose vulnerability

characterization
– Same accuracy as per-application fault

injection
– Much cheaper

• Initial steps
– Fault injection iterative linear algebra methods
– Library-based fault vulnerability analysis

…

Step 1: Analyzing fault vulnerability
of iterative methods

• Target domain:
solvers for sparse linear problem Ax=b

• Goal:
understand error vulnerability of class of
algorithms
– Raw error rates
– Effectiveness of potential solutions

• Error model: memory bit-flips

Possible run outcomes

• Success: <10% error

• Silent Data Corruption (SDC): ≥10% error

• Hang: method doesn’t reach target
tolerance

• Abort: SegFault or failed SparseLib check

Errors cause SDCs, Hangs, Aborts
in ~8-10%, each

Large scale applications vulnerable
to silent data corruptions

• Scaled to 1-day, 1,000-processor run of
application that only calls iterative method

10FIT/MB DRAM (1,000-5,000 Raw FIT/MB, 90%-98% effective error correction)

Larger scale applications even more
vulnerable to silent data corruptions

• Scaled to 10-day, 100,000-processor run of
application that only calls iterative method

10FIT/MB DRAM (1,000-5,000 Raw FIT/MB, 90%-98% effective error correction)

Error Detectors

Base

Convergence detectors reduce
SDC at <20% overhead

Base

Convergence detectors reduce
SDC at <20% overhead

Base

Native detectors have little effect at
little cost

Base

Encoding-based detectors significantly
reduce SDC at high cost

Base

Encoding-based detectors significantly
reduce SDC at high cost

Base

First general analysis of error
vulnerability of algorithm class

• Vulnerability analysis for class of common
subroutines

• Described raw error vulnerability

• Analyzed various detection/tolerance
techniques
– No clear winner, rules of thumb

Step 2: Vulnerability analysis of
library-based applications

• Many applications mostly composed of
calls to library routines

• If error hits some routine, output will be
corrupted

• Later routines:
corrupted inputs ⇒ corrupted outputs

Inputs Outputs

(Work in progress)

Idea: predict application
vulnerability from routine profiles

• Library implementors provide vulnerability
profile for each routine:
– Error pattern in routine’s output after errors
– Function that maps input error patterns to

output error patterns

Inputs Outputs

Idea: predict application
vulnerability from routine profiles

• Given application’s dependence graph
– Simulate effect of error in each routine
– Average over all error locations to produce

error pattern at outputs

Inputs Outputs

Examined applications that use
BLAS and LAPACK

• 12 routines ≥O(n2), double precision real
numbers
– Matrix-vector multiplication – DGEMV
– Matrix-matrix multiplication – DGEMM
– Rank-1 update – DGER
– Linear least squares – DGESV, DGELS
– SVD factorization – DGESVD, DGGSVD,

DGESDD
– Eigenvectors: DGEEV, DGGEV, DGEES,

DGGES

Examined applications that use
BLAS and LAPACK

• 12 routines ≥O(n2), double precision real
numbers

• Executed on randomly-generated nxn
matrixes
(n=62, 125, 250, 500)

• BLAS/LAPACK from Intel’s Math Kernel
Library on Opteron(MLK10) and
Itanium2(MKL8)
– Same results on both

• Error model: memory bit-flips

Error patterns:
multiplicative error histograms

DGEMM

Output error patterns fall into few
major categories

1.E‐08

1.E‐06

1.E‐04

1.E‐02

1.E+00

1.E‐08

1.E‐06

1.E‐04

1.E‐02

1.E+00

DGGES
Output beta - 62x1

DGESV
Output L - 62x62

DGGES
Output vsr - 62x62

DGEMM
Output C - 62x62

Error patterns may vary with
matrix size

1.E‐07

1.E‐05

1.E‐03

1.E‐01

1.E‐07

1.E‐05

1.E‐03

1.E‐01

DGGSVD
Output beta

DGGSVD
Output V

62 125 250 500

Input-Output error transition
functions

• Input-Output error transition functions:
trained predictors
– Linear Least Squares
– Support Vector Machines

(linear, 2nd degree polynomial, rbf kernels)
– Artificial Neural Nets

(3,10,100 layers,; linear, gaussian, gaussian
symmetric and sigmoid transfer functions)

Trained on multiple input error
patterns

• DataInj: single bit errors

• DataInj-R: output errors of routines with DataInj
inputs

• UniInj: uniform multiplicative errors ∈[-100,100]

• UniInj-R: output errors of routines with UniInj
inputs

• Inj-R: output errors of error injected routines

Input-Output error transition
functions

• Input-Output error transition functions: trained
predictors
– Linear Least Squares
– Support Vector Machines
– Artificial Neural Nets

• Trained on sample input error patterns

uniform multiplicative errors∈[-100,100]UniInj:

outputs of routines with UniInj inputsUniInj-R:

single bit errorsDataInj:

outputs of error injected routinesInj-R:

outputs of routines with DataInj inputsDataInj-R:

Output errors depend
on input errors

• Equivalence classes
– DataInj, DataInj-R | Inj-R
– DataUni, DataUni-R

Evaluated accuracy of all predictors
on all training sets

• Error metric:
– probability of error ≥δ
– δ∈{1e-14, 1e-13, …, 2, 10, 100)

1E‐10

1E‐09

1E‐08

1E‐07

1E‐06

1E‐05

0.0001

0.001

0.01

0.1

1

Recorded

Predicted

Evaluated accuracy of all predictors
on all training sets

1E‐10

1E‐09

1E‐08

1E‐07

1E‐06

1E‐05

0.0001

0.001

0.01

0.1

1

Recorded

Predicted

1E‐10

1E‐09

1E‐08

1E‐07

1E‐06

1E‐05

0.0001

0.001

0.01

0.1

1

Recorded

Predicted

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Recorded Predicted Error

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Recorded Predicted Error

Linear Least Squares has
best accuracy, Neural nets worst
Evaluation set: union of all training sets

Linear Least Squares has
best accuracy, Neural nets worst

Accuracy varies among predictors

DGEES, output wr

Linear Least Squares has
best accuracy, Neural nets worst

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

e‐HeapInj.none.All uni0‐1All inj0‐1All e‐uni0‐1All e‐inj0‐1All

1.E‐14

2.E‐14

4.E‐14

9.E‐14

2.E‐13

3.E‐13

7.E‐13

2.E‐11

7.E‐10

2.E‐08

7.E‐07

2.E‐05

7.E‐04

2.E‐02

8.E‐01

2.E+00

1.E+01

Linear Least Squares has
best accuracy, Neural nets worst

Inj-R

DataInj

DataInj-R

DataUni

DataUni-R

Evaluated predictors on randomly-
generated applications

• Application has constant number of levels
• Constant number of operations per level
• Operations use as input data from prior

level(s)

Inputs Outputs

Neural Nets: Poor accuracy for
application vulnerability prediction

1E‐10

1E‐09

1E‐08

1E‐07

1E‐06

1E‐05

0.0001

0.001

0.01

0.1

1 Recorded

Predicted

Function=sigmoid, 3 hidden layers

1E‐10

1E‐09

1E‐08

1E‐07

1E‐06

1E‐05

0.0001

0.001

0.01

0.1

1 Recorded

Predicted

Linear Least Squares:
Good accuracy, restricted

1E‐10

1E‐09

1E‐08

1E‐07

1E‐06

1E‐05

0.0001

0.001

0.01

0.1

1

Recorded

Predicted

SVMs:
Good accuracy, general

Function=rbf, gamma=1.0

Work is still in progress

• Correlating accuracy of input/output
predictors to accuracy of application
prediction

• More detailed fault injection

• Applications with loops

• Real applications

Step 3: Compiler analyses

• No need to focus on external libraries

• Can use compiler analysis to
– Do fault injection/propagation on per-function

basis
– Propagate error profiles through more data

structures (matrix, scalar, tree, etc.)

Step 4: Scalable analysis of
parallel applications

• Cannot do fault injection on 1,000-process
application

• Can modularize fault injection
– Inject into individual processes

Step 4: Scalable analysis of
parallel applications

• Cannot do fault injection on 1,000-process
application

• Can modularize fault injection
– Inject into single-process runs
– Propagate through small-scale runs

Working toward understanding
application vulnerability to errors

• Soft errors becoming increasing problem
on HPC systems

• Must understand how applications react to
soft errors

• Traditional approaches inefficient for
realistic applications

• Developing tools to cheaply understand
vulnerability of real scientific applications

