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Soft error: one-time corruption of 
system state

• Examples: Memory bit-flips, erroneous 
computations

• Caused by 
– Chip variability
– Charged particles passing through transistors

• Decay of packaging materials (Lead208, Boron10)
• Fission due to cosmic neutrons

– Temperature, power fluctuations



Soft errors are a critical reliability 
challenge for supercomputers

• Real Machines:
– ASCI Q: 26 radiation-induced errors/week
– Similar-size Cray XD1: 109 errors/week 

(estimated)
– BlueGene/L: 3-4 L1 cache bit flips/day

• Problem grows worse with time
– Larger machines ⇒ larger error probability
– SRAMs growing exponentially more 

vulnerable per chip



We must understand the impact of soft 
errors on applications

• Soft errors corrupt application state
• May lead to crashes or
• Need to detect/tolerate soft errors

– State of the art: checkers/correctors for 
individual algorithms

– No general solution
• Must first understand how errors affect 

applications
– Identify problem
– Focus efforts

corrupt output



Prior work says very little about most 
applications

• Prior fault analysis work focuses on 
injecting errors into individual applications
– [Lu and Reed, SC04]: Linux + MPICH + 

Cactus, NAMD, CAM
– [Messer et al, ICSDN00]: Linux + Apache and 

Linux + Java (Jess, DB, Javac, Jack)
– [Some et al, AC02]: Lynx + Mars texture 

segmentation application
…

• Where’s my application?



Extending vulnerability 
characterization to more applications
• Goal: general purpose vulnerability 

characterization
– Same accuracy as per-application fault 

injection
– Much cheaper

• Initial steps
– Fault injection iterative linear algebra methods
– Library-based fault vulnerability analysis

…



Step 1: Analyzing fault vulnerability 
of iterative methods

• Target domain: 
solvers for sparse linear problem Ax=b

• Goal:
understand error vulnerability of class of 
algorithms
– Raw error rates
– Effectiveness of potential solutions

• Error model: memory bit-flips



Possible run outcomes

• Success: <10% error

• Silent Data Corruption (SDC): ≥10% error

• Hang: method doesn’t reach target 
tolerance

• Abort: SegFault or failed SparseLib check



Errors cause SDCs, Hangs, Aborts 
in ~8-10%, each



Large scale applications vulnerable 
to silent data corruptions

• Scaled to 1-day, 1,000-processor run of 
application that only calls iterative method

10FIT/MB DRAM (1,000-5,000 Raw FIT/MB, 90%-98% effective error correction)



Larger scale applications even more 
vulnerable to silent data corruptions

• Scaled to 10-day, 100,000-processor run of 
application that only calls iterative method

10FIT/MB DRAM (1,000-5,000 Raw FIT/MB, 90%-98% effective error correction)



Error Detectors

Base



Convergence detectors reduce 
SDC at <20% overhead

Base



Convergence detectors reduce 
SDC at <20% overhead

Base



Native detectors have little effect at 
little cost

Base



Encoding-based detectors significantly 
reduce SDC at high cost

Base



Encoding-based detectors significantly 
reduce SDC at high cost

Base



First general analysis of error 
vulnerability of algorithm class

• Vulnerability analysis for class of common 
subroutines

• Described raw error vulnerability

• Analyzed various detection/tolerance 
techniques
– No clear winner, rules of thumb



Step 2: Vulnerability analysis of 
library-based applications

• Many applications mostly composed of 
calls to library routines

• If error hits some routine, output will be 
corrupted

• Later routines: 
corrupted inputs ⇒ corrupted outputs

Inputs Outputs

(Work in progress)



Idea: predict application 
vulnerability from routine profiles

• Library implementors provide vulnerability 
profile for each routine:
– Error pattern in routine’s output after errors
– Function that maps input error patterns to 

output error patterns

Inputs Outputs



Idea: predict application 
vulnerability from routine profiles

• Given application’s dependence graph
– Simulate effect of error in each routine
– Average over all error locations to produce 

error pattern at outputs

Inputs Outputs



Examined applications that use 
BLAS and LAPACK

• 12 routines ≥O(n2), double precision real 
numbers
– Matrix-vector multiplication – DGEMV
– Matrix-matrix multiplication – DGEMM
– Rank-1 update – DGER
– Linear least squares – DGESV, DGELS
– SVD factorization – DGESVD, DGGSVD, 

DGESDD
– Eigenvectors: DGEEV, DGGEV, DGEES, 

DGGES



Examined applications that use 
BLAS and LAPACK

• 12 routines ≥O(n2), double precision real 
numbers

• Executed on randomly-generated nxn
matrixes
(n=62, 125, 250, 500)

• BLAS/LAPACK from Intel’s Math Kernel 
Library on Opteron(MLK10) and 
Itanium2(MKL8)
– Same results on both

• Error model: memory bit-flips



Error patterns: 
multiplicative error histograms

DGEMM



Output error patterns fall into few 
major categories
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Error patterns may vary with 
matrix size

1.E‐07

1.E‐05

1.E‐03

1.E‐01

1.E‐07

1.E‐05

1.E‐03

1.E‐01

DGGSVD
Output beta

DGGSVD
Output V

62 125 250 500



Input-Output error transition 
functions

• Input-Output error transition functions: 
trained predictors
– Linear Least Squares
– Support Vector Machines

(linear, 2nd degree polynomial, rbf kernels)
– Artificial Neural Nets

(3,10,100 layers,; linear, gaussian, gaussian
symmetric and sigmoid transfer functions)



Trained on multiple input error 
patterns

• DataInj: single bit errors

• DataInj-R: output errors of routines with DataInj
inputs

• UniInj: uniform multiplicative errors ∈[-100,100]

• UniInj-R: output errors of routines with UniInj
inputs

• Inj-R: output errors of error injected routines



Input-Output error transition 
functions

• Input-Output error transition functions: trained 
predictors
– Linear Least Squares
– Support Vector Machines
– Artificial Neural Nets

• Trained on sample input error patterns

uniform multiplicative errors∈[-100,100]UniInj:

outputs of routines with UniInj inputsUniInj-R:

single bit errorsDataInj:

outputs of error injected routinesInj-R:

outputs of routines with DataInj inputsDataInj-R:



Output errors depend 
on input errors

• Equivalence classes
– DataInj, DataInj-R    |    Inj-R
– DataUni, DataUni-R



Evaluated accuracy of all predictors 
on all training sets

• Error metric: 
– probability of error ≥δ
– δ∈{1e-14, 1e-13, …, 2, 10, 100)
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Evaluated accuracy of all predictors 
on all training sets
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Linear Least Squares has 
best accuracy, Neural nets worst
Evaluation set: union of all training sets



Linear Least Squares has 
best accuracy, Neural nets worst



Accuracy varies among predictors

DGEES, output wr



Linear Least Squares has 
best accuracy, Neural nets worst
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Linear Least Squares has 
best accuracy, Neural nets worst
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Evaluated predictors on randomly-
generated applications

• Application has constant number of levels
• Constant number of operations per level
• Operations use as input data from prior 

level(s)

Inputs Outputs



Neural Nets: Poor accuracy for 
application vulnerability prediction
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Function=sigmoid, 3 hidden layers
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Linear Least Squares: 
Good accuracy, restricted
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Work is still in progress

• Correlating accuracy of input/output 
predictors to accuracy of application 
prediction

• More detailed fault injection

• Applications with loops

• Real applications



Step 3: Compiler analyses

• No need to focus on external libraries

• Can use compiler analysis to 
– Do fault injection/propagation on per-function 

basis
– Propagate error profiles through more data 

structures (matrix, scalar, tree, etc.)



Step 4: Scalable analysis of 
parallel applications

• Cannot do fault injection on 1,000-process 
application

• Can modularize fault injection
– Inject into individual processes



Step 4: Scalable analysis of 
parallel applications

• Cannot do fault injection on 1,000-process 
application

• Can modularize fault injection
– Inject into single-process runs
– Propagate through small-scale runs



Working toward understanding 
application vulnerability to errors

• Soft errors becoming increasing problem 
on HPC systems

• Must understand how applications react to 
soft errors

• Traditional approaches inefficient for 
realistic applications

• Developing tools to cheaply understand 
vulnerability of real scientific applications


