
PAL

Application Performance Modeling:
Predictive Accuracy in the Presence of

Simplifying Abstractions
Kevin J. Barker

With
Darren J. Kerbyson and Scott Pakin

Performance and Architecture Laboratory (PAL)
http://www.c3.lanl.gov/pal

Computer and Computational Sciences Division
Los Alamos National Laboratory

PAL Performance Model Characteristics

Goals for performance modeling (What do we want from a model?):
– Predictive capability

» Variations in component performance (network, processor, etc.)
» Variations in system size
» Variations in network architecture/topology

– Simplicity
» Performance models should capture only those elements which actually

impact application performance
– Accuracy

» How well do the model’s predictions compare against measured runtimes on
current systems?

Ttotal = Nitr · maxPEs(Ncell·Tcomp + Tcomm – Toverlap)

PAL However…

Certain application characteristics are problematic
– Irregular domain partitioning

» “Strange” boundaries between processors affect communication volume
and neighbor count

» Computation impacted by properties of local elements (e.g., material type)
» Varying cell counts across processors

– Global domain properties
» Ocean simulations with islands of land

– Adaptivity
» Neighbor relationships, boundary sizes, and local cell counts all vary over

time

PAL How to Model Such Applications?
We will look at three applications (Krak, VPIC, and HYCOM)
– Computation and communication requirements

» Vary across processors
» Do not necessarily remain static for length of run
» Are determined by characteristics of input deck and are unknown in

advance
– Communication patterns (i.e., neighbor sets) are determined at

runtime
– Input domain itself may be irregular (e.g., holes in the input as in

HYCOM)
One approach is to develop a model for each processor in the
system
– Very labor intensive, particularly at large scale
– Many factors are not known in advance, making model development

impossible
– Would have to reformulate model for each processor count
– May also need a model for each iteration!

PAL Better Approach: Abstraction

Idea is to develop a single model
– Describe all processors in the system…
– …even though each may process a different workload

Abstraction trades off potential model accuracy for predictive
capability
– How much accuracy is potentially lost?

Often relies on making key observations about application
characteristics at large scale
– Predictions tend to become more accurate as processor count

increases
– This is OK, as we are generally interested in modeling performance at

large scale

PAL Case Study #1: Krak

Production hydrodynamics code developed at LANL
– Simulates forces propagating through objects composed of multiple materials
– >270K lines of code, >1600 source files
– Object-oriented Fortran dialect

Typically executes in strong-scaling mode (fixed global domain size)

Objects mapped onto grid
– Grid composed of “cells”
– Cell defined by “faces”
– Faces connect “nodes”
– “Ghost nodes” on PE boundary

Processing flow moves through
series of time-steps that calculate
object deformation caused by high-
energy forces

Processor A Processor BProcessor A Processor BProcessor A Processor B

PAL Krak Input Description

Three grid sizes studied
– Small : 3,200 Cells
– Medium : 204,800 Cells
– Large : 819,200 Cells

Cells contain one of three
material types
– Aluminum
– Foam
– High Explosive (HE) Gas

Regular grid decomposed into
irregular subgrids (colors –
shown for 16 processors)
Metis partitioning optimized for
edge-cuts leads to irregular
domain shapes and sizes

H
igh-E

xplosive G
as

Aluminum
Foam

Aluminum

H
igh-E

xplosive G
as

Aluminum
Foam

Aluminum

Before Rotation After Rotation

PAL Krak Performance Model

Given our per-processor performance model, how do we
model Krak?
– Computation

» Per cell computation cost of each material
» Number of cells of each material in each sub-grid

– Communication
» Boundary length between sub-grids
» Collectives

All of these are determined by the exact partitioning of the
input spatial grid, which cannot be known in advance
Any resulting model would not satisfy goals of simplicity
and predictive ability
Abstraction is the key…

PAL Key Observations
Due to Strong Scaling:
1. Sub-grids become more homogeneous as system size

increases (figure below)
2. Assuming each sub-grid to be square is reasonable at large

system sizes

Small System Size Large System Size

PAL Performance Model

Computation
– Each subgrid contains the same number of cells
– All cells are of the most computationally intensive material
– All subgrids are square in shape
– Per-cell cost derived from measuring compute times of subgrids of

varying sizes
Communication
– Each subgrid is modeled with four neighbors in 2D
– All boundaries are the same length
– All boundary faces touch only a single material
– Communication consists of boundary exchanges and collectives

Will such abstractions reduce the effectiveness of the
performance model?

Abstractions result in simplified performance model:

PAL Performance Model Validation

Measurements taken on 256 node (dual-socket, dual-core 2.0GHz
Opteron) cluster connected with Infiniband
Assuming homogeneous material distribution more realistic for large
processor counts
Error less than 3% at 512 processors
Communication overheads overwhelm benefits of increased
parallelism at large processor counts

Medium Problem Size Large Problem Size

0.01

0.1

1

10

1 10 100 1000

Processor Count

Ite
ra

tio
n

Ti
m

e
(s

)

Measured
Predicted

0.01

0.1

1

1 10 100 1000

Processor Count

Ite
ra

tio
n

Ti
m

e
(s

)

Measured
Predicted

PAL

Several large-runs on
pre-production Roadrunner
Almost linear scaling observed
– Overhead of communications is low

“0.374 Pflop/s Trillion-particle Particle-in-cell Modeling
of Laser Plasma Interactions on Roadrunner”, Bowers,
Albright, Bergen et. Al., Gordon Bell Finalist, SC‘08

3D laser plasma interaction

Isosurfaces of Electric Field
Color indicates laser field

Case Study #2: Modeling VPIC on Roadrunner
0.374 Pflops on Laser Plasma Interaction

PAL VPIC Overview

Plasma Particle-in-Cell
– 3-D volume containing multiple particle species (ions and electrons)

» Split into Voxels, each contain ~equal # of ions & electrons
– ions and electrons can move between voxels

» some communication per iteration (small-medium sized messages)
– Parallel Decomposition: in 1-D, 2-D or 3-D
– Weak-scaling: constant work per processor
– Periodic particle sorting to aid data layout in memory

Roadrunner implementation is Cell-centric
– PPE farms out work to SPEs
– Opterons used for message relay between Cells

Benchmark:
– 16x16x16 voxels per processor, voxel contains 512 particles / species (2)

Laser Plasma Interaction:
– 13x14x14 voxels per processor, voxel contains 6420 particles / species (3)

PAL Abstracting Per-Node Particle Count

Number of particles per processor varies over iterations
– Input deck dependent

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50
Iteration number

P
ar

tic
le

 c
ou

nt

Max Particles Gained

Max Particles Lost

Net Particle Movement # Particles / processor

2.092

2.093

2.094

2.095

2.096

2.097

2.098

2.099

2.100

2.101

2.102

0 10 20 30 40 50
Iteration number

Pa
rti

cl
e

co
un

t (
M

)

Max Particles Processed

Min Particles Processed

PAL Initial Performance predictions

1

2

3

4

5

6

7

4 8 16 32 64 128

256

512

720

1440

2880

5760

11520

12960

Hybrid-Core Count (Cell+AMD)
R

un
tim

e
A

dv
an

ta
ge

Runtime Advantage with Cell

compute bound
– ~65% SPU, ~31% PPU

Very little communication overheads
– ~1% Cell ↔ Opteron, ~3% Infiniband

Node Count
Fa

ct
or

 P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

1 2 4 8 16 32 64 128
1C

U
2C

U
4C

U
8C

U
16C

U
17C

U

Runtime on Opterons /
Runtime on accelerated RR

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128

180

360

720

1440

2880

3240
Tri-blade Count

Pe
rc

en
ta

ge
 o

f I
te

ra
tio

n
Ti

m
e

Communication (Infiniband)
Communication (Cell <-> Opt)
Compute (Opteron)
Compute (PPE)
Compute (SPE)

Node Count

1 2 4 8 16 32 64 128
1C

U
2C

U
4C

U
8C

U
16C

U
17C

U

Time profile

Very Good scaling
~6x better performance using
Cell (benchmark input)

PAL Case Study #3: HYCOM Ocean Model

Hybrid vertical (depth) coordinate
scheme

– Transitions smoothly from deep ocean
to shallow coastal regions

Parallel data decomposition:
– 3D spatial grid partitioned into “tiles”

along 2 horizontal dimensions
– Any tile consisting solely of land is

removed
– Each processor assigned a single

(whole or partial) ocean tile
Strong scaling mode reduces time
to solution for larger PE counts
Approx. 25K lines of Fortran code

504 Processors

5107 Processors

“A Performance Model and Scalability Analysis of the
HYCOM Ocean Simulation Application”, Kevin J. Barker
and Darren J. Kerbyson, Proc. Of IASTED PDCS 2005

PAL HYCOM Performance Model

Again, performance model has two primary components:

Computation
– Simple relative to Krak

» Computational cost dictated by largest subgrid
» Subgrid size is known in advance

– Fractional subgrids incur idle time
Communication
– Interprocessor communication required to exchange boundary

information between subgrids
– Regular communication pattern is disturbed by land in the input region

Where do we need abstraction?

PAL Modeling HYCOM Communication

Regular Tile Layout

2D Boundary Exchanges
– Neighbor count varies with tile layout and gaps
– Msg sizes scale with size of subgrid boundary
– Neighbor relationships do not span gaps

“Software Reductions”
– Step 1: Processors communicate with head of row
– Step 2: Heads of rows communicates with “root”

processor
– How many processors are in each row or column?

Irregular Tile Layout Tile Layout with Gaps
Caused by Land

PAL Modeling HYCOM Communication

What abstraction can be applied to simplify the model?

Suppose we discount the presence of land
– Global domain completely covered by ocean
– Each processor now has 4 immediate neighbors
– Each row consists of an equal number of cells
– All subgrid boundaries are the same size

Key observation is that messages are bandwidth bound, even
at large scale

PAL Model Validation
Input Decks:

Machine Parameters:
1/12 degree4500x3298x26AllLarge
1/4 degree1500x1100x26AllMedium
1/12 degree450x450x22PacificSmall

ResolutionGrid Size
(X x Y x depth)

OceansInput Deck

1Quadrics
QsNet

301 Gbyte21.3
GHz

Intel
Itanium II

1Quadrics
QsNet

1264 Gbytes41.25
GHz

HP Alpha
EV 68

1Quadrics
QsNet

502 Gbytes4833
MHz

HP Alpha
EV 68

NICs/
Node

Network
Type

Node
Count

Memory/
PE

PEs/NodeClock
Speed

Processor
(PE) Type

PAL Model Validation

1

10

100

1000

0 50 100 150 200 250 300

Processor Count

R
un

tim
e

(s
)

Measured (Medium)

Predicted (Medium)

Measured (Small)

Predicted (Small)

1

10

100

1000

10000

0 50 100 150

Processor Count

R
un

tim
e

(s
)

Measured (Medium)

Predicted (Medium)

Measured (Small)

Predicted (Small)

1

10

100

1000

10000

0 100 200 300 400 500 600

Processor Count

R
un

tim
e

(s
)

Measured (Medium)

Predicted (Medium)

Measured (Large)

Predicted (Large)

HP Alpha EV 68 HP Alpha EV 68 (2) Intel Itanium II

8.5Medium

5.6SmallItanium II

7.9Large

7.7MediumAlpha EV 68 (2)

12Medium

17SmallAlpha EV 68

Mean Error (%)InputSystem Single baroclinic + 2 barotropic
steps is minimum iteration size

Model typically accurate to
within 10% of measurement

PAL Conclusions

Scientific applications are often not regularly partitioned
– 3rd party partitioning software
– Inconsistencies in global domain caused by inhomogeneous features
– Irregular communication patterns
– Subdomain variations over time

Iteration time of loosely synchronous applications will be
determined by the slowest process
Assuming regularity can simplify modeling process
– Computational load across cells is homogeneous
– Interprocessor communication pattern is the same everywhere

Accuracy is not negatively impacted, particularly at large
scale
– Irregularity approximates regularity at large scale

