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ABSTRACT

Background: The main goal of Joint Genome Institute’s (JGI) Microbial Genome
Program is to deliver finished microbial genomes faster, cheaper and better quality.
Traditional method of producing multiple subclone libraries and Sanger reads is costly
and also time consuming. 454 Life sciences has recently developed a highly scalable,
highly parallel high throughput system which does not require traditional cloning
based techniques and that produces high coverage, high quality genome data. In order
to reduce the costs associated with library production and finishing it has become
necessary to evaluate the incorporation of sequencing data produced by 454 into
Sanger assembly. This evaluative study helps us in understanding how the 454 data
can be used in an automated fashion to close the gaps in Sanger data and reduce the
cost of finishing.
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Procedure: In contrast to Sanger data, 454 data does not have a phrap score associated
with every base. In order to assemble it with Sanger data using the phrap assembler,
every base in this data has to be assigned a specific quality score. We split 454 contigs
into pieces of 2000 bp and overlap of 100 bp and have employed the following two
strategies:

Strategyl: Assign every 454 base a low quality of 20. Assemble fake 454 pieces with
Sanger data. When they connect the end of the contigs, we pick primers on this low
quality data to close the Sanger gaps. Since the end points of the gaps are known the
number of reactions to pick compared to what is required if only 5X Sanger data is
used is drastically reduced.

Strategy2: Assign every 454 base a good quality of 30, except the problematic areas,
that we identified as homopolymeric regions. Assign quality to every base in
homopolymeric regions based on a blast database between Sanger data and 454 data
for few finished projects.

RESULTS:

Improvement in finishing efficiency

454 sequencing data was incorporated into the Sanger data using strategy 1 and strategy
2. This provided us with three different data sets on which we could run simulations to
analyze the best possible way to improve and automate our finishing process. The first set
was 454 data incorporated into 5X coverage Sanger data using Strategy 1. The second set
of data was 454 data incorporated into 5X coverage Sanger data using Strategy 2 and the
third set was the high quality Sanger data with 10 X coverage with no 454 data. Table 1.
shows the number of primers after the first round of Autofinish primer picking for each
dataset. It can be said that 454 data incorporation via any of the strategies does lead to
improvement in the sense that lesser number of primers are picked as compared to when
only Sanger data is used.

Achieving cost savings at the cost of quality of the finished genome is not
acceptable. The second simulation involved picking three projects, of which one had lots
of contigs and scaffolds and was a long way from being finished and the other two had
small number of contigs and scaffolds and were closer to being finished. For all three
projects we incorporated 454 data with low coverage (5X) Sanger data using both the
strategies. These data sets were subjected to multiple rounds of AutoFinish primer
picking and the results were analyzed using Consed.

Distribution of error rate based on motif length

We calculated the total error rate of homopolymers of particular size across 14 projects.
Errors rates for Adenine and Thymine were grouped together as were the error rates for
Cytosine and Guanine. The error rate for a particular homopolymer in strategy 2 is
inversely proportional to the homopolymer length. However when error rate of Purine
and Pyrimidine homopolymers were plotted against the size of the homopolymer we see
from Fig.1, that as size increases error rate also increases. This clearly suggests that 454
homopolymer data is more erroneous for longer homopolymers. Also the high error rate
of A,T homopolymers as compared to G,C homopolymers suggests that 454 data is
much more reliable for genomes containing high incidence of G/C homopolymer regions
rather than A/T homopolymer regions.

Analysis of error rate based on GC content of genome

Fig.2 illustrates the Error rate across all motifs in a particular project against the GC%
(total GC content of the genome which is varying in the range of 27 to 68%) . We do not
see any correlation across the whole genome between the GC% and the number of errors
associated with the 454 data. Hence we do not feel that the 454 sequencing technology is
biased in the prediction of bases in any way associated with the GC content of the
genome within this range.
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