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Abstract — The problem of choosing a prior distribution for the Bayesian interpretation of measurements (specifically internal
dosimetry measurements) is considered using a theoretical analysis and by examining historical tritium and plutonium urine
bioassay data from Los Alamos. Two models for the prior probability distribution are proposed: (1) the log-normal distribution,
when there is some additional information to determine the scale of the true result, and (2) the ‘alpha’ distribution (a simplified
variant of the gamma distribution) when there is not. These models have been incorporated into version 3 of the Bayesian internal
dosimetry code in use at Los Alamos (downloadable from our web site). Plutonium internal dosimetry at Los Alamos is now being
done using prior probability distribution parameters determined self-consistently from population averages of Los Alamos data.

INTRODUCTION

The Bayesian approach to interpretation of measure-
ments in health physics has several important advan-
tages. It directly addresses the questions of greatest
interest; for example, ‘Did I have an intake of plu-
tonium?’ and ‘With what probability?’ (as opposed to
‘If I didn’t have an intake of plutonium, what is the
probability the measurement result would exceed the
decision level?’). It properly includes the effect of rarity
of true positives in the problem of distinguishing signal
from noise. It allows inferences about the values of
many parameters from little data (underdetermined
problems). However, one of the main disadvantages has
been the lack of guidance in the choice of the prior
probability distribution, which is always necessary in
the Bayesian approach. The Bayesian health physicist
is allowed to choose the prior probability distribution
subjectively. It seems important, nevertheless, that
objective data be used to support educated guesses. The
prior probability distribution has a small effect on the
inferred result when a large amount of measurement
data is available. In the opposite case, which is not
unknown in health physics, the prior can influence the
inference in an important way.

In this paper we apply some theoretical concepts and
make use of historical data from tritium and plutonium
internal dosimetry at Los Alamos to arrive at suitable,
simple models for the prior probability distribution. We
basically propose two models for the prior probability
distribution: (1) the log-normal distribution, when there
is some additional information to determine the scale of
the true result, and (2) the ‘alpha’ distribution (a simpli-
fied variant of the gamma distribution) when there is
not. Although we specifically consider urine bioassay
measurements in the context of internal dosimetry, these
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concepts carry over to many other areas of measure-
ment interpretation. A broader discussion of the use
of Bayesian methods for internal dosimetry is con-
tained in previous papers in this series(1–5).

At the practical level for internal dosimetry, we have
incorporated these new models for the prior probability
distribution into version 3 of our Bayesian internal dosi-
metry code (the Bayes II software package, download-
able from our web site, www.lanl.gov\bayesian). The
Bayesian unfolding algorithm is described in detail in
Reference 4. In order to carry out a Bayesian analysis
of bioassay data using the new models for the prior
probability distribution, one needs only to choose the
value of a single parameter. When the worker has
been involved in an incident or incidents, the prior
parameter characterises the additional information on
the possible magnitude of the intake (for example,
nose swabs or air monitor readings). When no inci-
dents have occurred, the prior parameter reflects the
population average of the number of intakes (in a cer-
tain range of magnitude) that occur per unit time.
From Los Alamos plutonium data in recent years, this
number (the parametera) is about 1 ‘intake’ per 1000
workers per year or even less.

The generic problem of Bayesian interpretation of
Gaussian measurements using the alpha prior prob-
ability distribution leads to a ‘universal curve’. This
single curve relates measurement result above back-
ground (in standard deviations) to posterior odds of
‘positive’ divided by the quantityaDt (Dt is the time
interval). For example, using this curve the Bayesian
health physicist would determine that the odds are 20
to 1 in favour of ‘positive’ if the measurement is 4.7
standard deviations above background foraDt = 0.001.
In contrast, the classical prescription of 1.645 standard
deviations (for a false positive rate of 0.05)(6) leads to
posterior odds of only 0.003 to 1 for an intake — or 300
to 1 against there having been an intake. This example
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shows the importance of the Bayesian method when
detecting rare events (a small).

CHOICE OF PRIOR PROBABILITY
DISTRIBUTION

In general two cases exist: (1) where there is qualitat-
ive information or quantitative information from other
measurements giving a non-zero, although perhaps very
uncertain, estimate of the true intake amount, and (2)
where there is not.

In the first case, the log-normal distribution is appro-
priate for the prior probability distribution. The log-
normal distribution for intake amountj is given by

P(j) =
1

√2psLNj
expF−

1
2s2

LN
Sln

j

aD2G (1)

When plotted on a log scale (versus lnj rather thanj),
the log-normal distribution is Gaussian with maximum
and median probability occurring at ln a and standard
deviationsLN. The log-normal distribution can be very
broad, for example, withsLN = 3 the standard deviation
of ln j is 3, and when lnj varies by 3,j varies by a
factor of e3 < 20. Two standard deviations correspond
to a factor of 400. The value of a might be obtained
from the other measurements, for example for internal
dosimetry based on urine measurements, the additional
measurements might be nose swabs, air monitoring data,
faecal monitoring data, wound count data, orin vivo
count data. The value ofsLN would be chosen de-
pending on the relevance and quality of the additional
measurements. We normally use the additional measure-
ments to define discrete categories, for example ‘true air
monitor alarm’, or ‘wound count greater than 7 Bq’ that
have the same prior probability distribution.
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Figure 1. Distribution of tritium bioassay measurement results.

In the case of no additional measurements, the prior
probability distribution is obtained using data from a
population similar to that which is being measured. For
example, Figure 1 shows tritium urine bioassay data for
a worker population over the time period 1998 and
1999. Data are selected for which a preceding data point
14 days before (14 days± 10%) was ‘zero’ (below a
critical level), so that an elevated measured value corre-
sponds to an intake occurring in the 14 day interval.
It is apparent that the distribution is asymmetrical. The
portion of the distribution for negative values reflects
measurement uncertainty, while the portion of the distri-
bution for positive values indicates the prior probability
distribution for intakes occuring in a 14 day time period
as well as measurement uncertainty. The observed dis-
tribution is in fact the convolution of the measurement
uncertainty distribution with the prior probability distri-
bution for the population(2). The fit shown in Figure 1
will be discussed in what follows.

The data of Figure 1 can be fitted by varying para-
meters of a function representing the prior probability
distribution. Reference 5 discusses fitting this data using
a log-normal or Pareto prior with or without a delta-
function component. However, we would like a simpler
parameterisation of the prior probability distribution
(fewer parameters) and one with a more satisfying
theoretical justification.

We expect the distribution shown in Figure 1 to
depend on the time intervalDt. As Dt increases there
would be more time for intakes to occur. Figure 2 shows
the same type of distribution as Figure 1 except that the
time period before the preceding ‘zero’’ result was 28
rather than 14 days. The prior probability distribution
clearly changes, becoming broader.

100

10

1

0.1
-500 0 500 1500 20001000

N
um

be
r 

of
 c

as
es

Urine excretion (Bq.l-1)

Dt = 28 days

s = 0.23

Figure 2. Distribution of tritium bioassay measurement results
for a 28 day sampling period.
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In Reference 4 we proposed that the prior probability
distribution describing intakes occuring in a time
interval Dt would have the form

P(j) = (1 − lDt)d(j) + Dtw(j) (2)

whered(j) is the delta function (the delta function,d(j),
is the limit of very narrow distributions peaked atj = 0
and having unit integral,ed(j) dj = 1). In Equation 2,
w(j) when multiplied by dt is the probability that an
intake of amountj in infinitesimal interval dj occurs in
the infinitesimal time interval dt. The integral

E`

0

w(j) dj = l (3)

when multiplied by dt represents the total probability of
an intake in time interval dt.

In this paper we generalise to cases where the normal-
isation integral given by Equation 3 diverges. We con-
sider intake probability functions of the form

w(j) =
a

j
expS−

j

AD (4)

wherea is a probability per unit time, and the parameter
A limits the distribution for large values ofj. The total
probability of an intake in time interval dt is now infinite
because very small intakes have a very large probability.

The prior probability distribution we are seeking is
the probability distribution of intakes in a finite time
interval Dt. It turns out that the probability distribution
of intakes in a finite time intervalDt is given by

P(j) =
aDt

j S j

ADaDt expS−
j

AD
G(1 + aDt)

(5)

This distribution has normalisation integral unity as
must be true for any probability distribution. The distri-
bution given by Equation 5 is the gamma distribution,
discussed in many reference books (e.g. see Reference
7). The functionG(1 + aDt) is the gamma function,
given by

G(1 + x) < 1 − Cx (6)

for x ¿ 1, where C is Euler’s constant, C= 0.577.
The relation between w(j), the probability that an

intake of amountj occurs in an infinitesimal time inter-
val dt, and P(j), the probability that the sum of all
intakes in a finite time intervalDt equalsj, is the kinetic
equation (‘the Fokker-Plank equation’(8)) of the process

P
t

= E`

0

w(j′)[P(j − j′) − P(j)]dj′ (7)

which equates the change in P occuring in time interval
dt to the difference in probability events entering and
leaving the interval dj. It is shown in Reference 8 that
the gamma distribution satisfies Equation 7 with w(j)
given by Equation 4. When the normalisation integral

given by Equation 3 is nondivergent, Equation 2 pro-
vides a solution of Equation 7 forDt small.

The distributions of tritium bioassay measurements
shown in Figures 1 and 2 are fit with gamma dis-
tributions having A= 800 Bq.l−1 and variable s= aDt.
The fits have s increasing withDt but not quite lin-
early. There are clearly significant uncertainties
because of the small number of events in each histo-
gram bin. Reasons for the non-linear scaling related
to sample contamination will be discussed later. The
measurement uncertainty distribution is assumed Gaus-
sian with s = 80 Bq.l−1.

In order to have only a single parameter we will use
the limit of Equation 5 for A→ `, an improper distri-
bution with parametera. We refer to this distribution
as the ‘alpha’ distribution. The alpha distribution is
truncated forj . A and has the form

P(j) =
aDt

j Sj

ADaDt

(8)

The alpha distribution with A→ ` is scale invariant,
meaning that its form is the same no matter what the
units or scale used. The log-normal and Pareto distri-
butions used in Reference 5 can fit the data of Figures
1 and 2 equally well but they have scale parameters that
are small compared with the measurement uncertainty.
The assumption underlying the alpha distribution is that
no matter what the measurement uncertainty, the distri-
bution will always be decreasing and will never reveal
a peak that would define a scale.

The alpha and gamma distributions describe situ-
ations where very small intakes are very probable, so
that no matter how small the time intervalDt, intakes
will have occurred. Nevertheless,

P(j) → d(j)

as

Dt → 0

as can be shown by integrating Equation 8 fromj = 0 to
some small positive value and taking the limitDt → 0.

WhenaDt is small, the alpha distribution is approxi-
mated by

P(jl , j , ju) = S j

ADaDtGju

jl

< aDt ln Sju

jl
D (9)

Using Equation 9, we can identifyaDt approximately
as the probability of an intake havingj values that are
between some lower value and e= 2.718< 3 times that
value. Because of scale invariance, this applies also to
measured bioassay data values as well as intake
amounts. The lower limit should be chosen large enough
to eliminate false positives. We will find it convenient
later to take these limits as 5s and 15s, wheres is
the measurement uncertainty.
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EXAMPLE — PLUTONIUM INTERNAL
DOSIMETRY — LOG-NORMAL PRIOR

At Los Alamos, plutonium intakes are divided into
two categories: (1) incident-related intakes where there
are indications from the workplace that some off-normal
occurrence has taken place, and (2) non-incident-related
intakes detected only from routine urine bioassay
samples. The log-normal distribution is used for the
prior probability distribution for the first category of
intakes.

Incident-related intakes are further divided into sub-
categories depending on the particular workplace indi-
cators involved. These sub-categories have been defined
and cover all plutonium work at Los Alamos since 1944.
They are as shown in Table 1.

Table 1 shows the number of239Pu incidents of each
type since 1980 and the average values of the intakes
determined using the previous (UF2.5) and current
(UF3.0) versions of the Bayesian unfolding code. The
date 1980 was chosen based on two criteria: (1) the date
is within the modern era where the same basic facility
was being used, and (2) early enough to include a large
amount of data. The current version of the Bayesian
unfolding code uses a log-normal prior probability dis-
tribution as given by Equation 1 withsLN = 3, having
a median value determined by the above data. The
median of a log-normal distribution is given by a= j̄
exp(−s2

LN/2) = j̄/90, wherej̄ is the average value.
The following iterative process was used. The aver-

age intake values for the various incident categories
were determined using the previous version of the code,
which used a different prior (log-normal plus delta func-
tion with subjectively determined parameters). These
average values were used to determine the rounded (to
the nearest factor of 3) values of the median parameter
a as shown in Table 1. These medians defined the log-
normal prior probability distribution used in the new
code. Using the new code the average intakes were
recalculated and found to be consistent with the rounded

Table 1. Incident types and average239Pu intakes since
1980.

Incident type Number Average intake (Bq)a(Bq)*
since
1980 (UF2.5) UF(3.0)

Nose count.17 Bq 27 160 140 3
(either side)
High nose count 33 100 80 1
High room air count 34 5 3 0.1
Wound count.7 Bq 36 5 4 0.1
Wound with excision 15 30 20 0.3
Unspecified incident 38 120 80 0.1
type
Other incident type 50 6 2 0.1

*Median of the log-normal distribution — see text.

medians found using the old code, so the log-normal
medians were not adjusted further.

The data in Table 1 are for239Pu (for which most of
the plutonium exposures at Los Alamos occurred). The
a values obtained in this way were applied to situations
involving 238Pu or 241Am using the factors shown in
Table 2, which are based on nominal isotope ratios
expected to be present.

EXAMPLE — PLUTONIUM INTERNAL
DOSIMETRY — ALPHA PRIOR

For plutonium intakes not related to known incidents,
the alpha prior given by Equation 8 is used. The value
of the parametera was determined from historical data
since 1980. The raw data are shown in Table 3.

The numbers denoted by N(y1 , yc) appearing in
Table 3 are the number of bioassay data where there are
two measurements y1 and y2 separated byDt such that
no intakes have occurred preceding the first measure-
ment (using the Bayesian unfolding code) and the first
measured value is less than yc = 0.74 mBq.d−1. The
numbers denoted by N(yl , y2 , yu) represent a subset
of those cases where an intake has occurred in the moni-
toring interval (using the Bayesian unfolding code) and
the second measured value is in the range yl , y2 , yu

where yl = 1.85 mBq< 5s and yu = 5.6 mBq< 15s,
where s is the measurement uncertainty standard
deviation.

We use the data shown in Table 3 to determinea

Table 2. Adjustment factors for a values.

Dominant isotope Factors

239Pu 238Pu 241Am

239Pu 1 0.1 0.2
238Pu 0.05 1 0.025
241Am 0.5 0.05 1

Table 3. Non-incident-related intakes.

Nuclide Dt N (y1 , yc)* N (y l , y2 , yu)**
(years)

(UF2.5) (UF3.0) (UF2.5) (UF3.0)

239Pu 1 13,347 13,398 23 23
239Pu 2 6915 6927 16 15
239Pu 3 4789 4800 10 10
238Pu 1 14,461 14,459 2 2
238Pu 2 7490 7486 2 2
238Pu 3 5250 5248 1 1

*Number of bioassay data pairs separated byDt — see text.
**Number of intakes — see text.
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using Equation 9. There is a complication in that some-
times high measured values at the end of a monitoring
interval are the result of sample contamination rather
than an intake occurring in the monitoring interval.
Sample contamination most frequently occurs if urine
samples are collected in the facility. A speck of dust
with alpha activity as little as 0.3 mBq (0.02 dpm) is a
significant contamination. Sample contamination has a
fixed probability b per sample, thus

N = N0FaDt lnSyu

yl
D + bG (10)

where N0 the total number of monitoring intervals of
length Dt considered, and N is the number of cases
where the second bioassay result was in the range
yl , y , yu. Fitting the data in Table 3 using Equation
10, the results shown in Table 4 are obtained.

It is apparent thata for non-incident-related intakes
is extraordinarily small, and we have only obtained an
upper limit. Figures 3 and 4 show examples of239Pu
bioassay data used in Table 3 for cases that we can
fairly clearly identify as real intakes and contamination

Table 4. Values of the quantitiesa and b for non-incident-
related intakes.

Nuclide a(y−1)* b(y−1)**

239Pu 23 10−4 ± 3 3 10−4 1.53 10−3 ± 0.63 10−3

238Pu 43 10−5 ± 9 3 10−5 1 3 10−4 ± 2 3 10−4

*Probability of intake — see text.
**Probability of sample contamination — see text.
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Figure 3. Bioassay data and UF code fit for a ‘real’ non-
incident-related intake.

events, although the Bayesian unfolding code considers
them both to be intakes.

The current version of the Bayesian unfolding code
(UF3.0) uses the alpha prior probability distribution
with a = 0.001 for239Pu, 238Pu, and241Am. This value
seems like an overestimate, particularly for238Pu, how-
ever, it is felt that the small values ofa obtained empiri-
cally for 238Pu reflect the small fraction of238Pu work
for plutonium workers at Los Alamos. For those work-
ers primarily working with238Pu, clearly a largera is
appropriate. The older version of the code (UF2.5) used
a different form for the prior probability distribution
(log-normal plus delta function with subjectively
determined parameter values). As seen in Table 3, the
numbers obtained using the current code are essentially
unchanged, so the iteration process has converged.

DISCUSSION

We have examined historical urine bioassay data for
239Pu and3H in order to determine more objectively
prior probability distributions for applications in internal
dosimetry. In situations where additional quantitative or
semiquantitative information exists the log-normal dis-
tribution is used, with the median value and standard
deviation determined by the additional information. In
other situations we use the alpha distribution with the
parametera determined by population data. The para-
metera might also be chosen subjectively. The quantity
aDt roughly has the meaning of the number of needles
expected in this particular haystack.

The interpretation of measurement results using the
alpha prior probability distribution is quite simple and
natural. Figure 5 summarises the situation. Shown in
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Figure 4. Bioassay data and UF code fit for what seems to be
a spurious intake caused by sample contamination.
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Figure 5 is the posterior odds ratio in favour of ‘posi-
tive’ relative to ‘zero’ (true amount greater than or less
than 0.1s0) normalised by the quantityaDt versus the
measurement result normalised bys0. The quantitys0

is the net measurement uncertainty standard deviation
for zero true amount. It turns out that by normalising
with aDt a ‘universal curve’ independent of the value
of aDt is obtained foraDt ¿ 0.1 (Figure 5 is an over-
plot for aDt = 0.01, 0.001, and 0.0001). As an example
of the use of Figure 5, assume that we desire at least 10
to 1 odds in favour of ‘positive’ (posterior probability
of ‘positive’ = 10/11) and want to know what decision
level that requires. Assume thataDt is estimated to have
the value 0.001. The abscissa in Figure 5 is then
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Figure 5. Universal curve of normalised posterior odds in
favour of ‘positive’ as against measurement result.
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Figure 5. Universal curve of normalised posterior odds in
favour of ‘positive’ as against measurement result.
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10/0.001= 10000. From the plotted curve this corre-
sponds to an ordinate value of about 4.6, which means
that the decision level must be 4.6s0.

Figure 5 allows a simple application of Bayesian stat-
istics to the measurement decision process, wherea is
determined either using population data or subjectively.
Mostly, however, one addresses more complex situ-
ations or one wishes more detailed information, requir-
ing the use of complex numerical calculations. Com-
puter codes for these calculations are available, for
example our Bayesian software packages I and II for
Windows 95, 98, and NT, downloadable from our Web
site: www.lanl.gov\bayesian.

We use a Gaussian measurement uncertainty model.
The measurement uncertainty standard deviation is
assumed to be given by

s = √[s2
0 + Bc + (Bvarc)2] (11)

where c is the true result, B enters for measurements
based on counting (as discussed in Reference 5) and Bvar

is a multiplicative biological/sample collection protocol
variability (typically 0.3 for urine samples with a spe-
cific gravity excretion time correction). Another univer-
sal feature of the curve plotted in Figure 5 is that it is
essentially independent of the quantities B and Bvar.
Non-Gaussian measurement uncertainly can greatly
change Figure 5 however. Non-Gaussian effects may be
investigated numerically (for example by varying the
parameter ‘beta’ in our Bayesian software package I).

For the purpose of interpreting data an improper prior
probability distribution such as the alpha distribution is
simple and useful (this distribution is improper because
the normalisation integral diverges when A→ `). The
posterior probability distribution is independent of A for
A → `, so this parameter drops out of the problem of
data interpretation. However, in order to simulate data
or calculate expectation values, a proper prior prob-
ability distribution is necessary, which means that a
finite value of the parameter A must be chosen.


