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Starting with the basic Poisson statistical model of a counting measurement process, ‘extraPoisson’ variance or ‘overdispersion’
are included by assuming that the Poisson parameter representing the mean number of counts itself comes from another distri-
bution. The Poisson parameter is assumed to be given by the quantity of interest in the inference process multiplied by a lognor-
mally distributed normalising coefficient plus an additional lognormal background that might be correlated with the normalising
coefficient (shared uncertainty). The example of lognormal environmental background in uranium urine data is discussed. An
additional uncorrelated background is also included. The uncorrelated background is estimated from a background count
measurement using Bayesian arguments. The rather complex formulas are validated using Monte Carlo. An analytical expression
is obtained for the probability distribution of gross counts coming from the uncorrelated background, which allows straightfor-
ward calculation of a classical decision level in the form of a gross-count alarm point with a desired false-positive rate. The main
purpose of this paper is to derive formulas for exact likelihood calculations in the case of various kinds of backgrounds.

INTRODUCTION

In making statistical inferences that allow quantitat-
ive estimates of uncertainty, one needs a statistical
model of the measurement process. As an example,
in internal dosimetry the quantitative estimation of
the uncertainty of an internally deposited radiation
dose is a current topic of great interest(1). The under-
lying statistical model for counting measurements is
the Poisson model; however, it is well recognised that
‘extraPoisson variance’ or ‘overdispersion’ may exist
caused by the Poisson parameter representing the
mean expected number of counts itself coming from
some other distribution. This present work paper
revisits and revises some previous work(2–5), where
the other distribution is assumed to be lognormal.
The usual treatment of Poisson overdispersion
assumes that the other distribution is a Gamma
distribution, in which case the resulting mixture dis-
tribution is again a Gamma distribution. However,
the lognormal seems to agree with data and is
qualitatively different from the Gamma distribution
in that it can have at the same time a finite mean and
an unlimited standard deviation over mean ratio.

The issue of greatest interest in this present work
is the question of additional backgrounds. These
backgrounds can originate in different places in the
measurement process, and the detailed statistical
modelling is different. The true value of the Poisson

mean counts parameter is assumed equal the true
value of the quantity of interest (e.g. the urine
excretion rate) times a normalisation coefficient plus
a background. While the normalisation coefficient
and background are assumed to be lognormal and
possibly correlated, another, so-called type-0 back-
ground that is not correlated with the normalisation
coefficient is also assumed to be present. The
Poisson parameter of the type-0 background is esti-
mated from the Bayesian posterior distribution after
a background measurement, assuming a Gamma
prior on the true type-0 background counting rate.

The main purpose of this paper is to derive for-
mulas for exact likelihood calculations in the case of
various kinds of backgrounds. The likelihood func-
tion is central to statistical inference from data, as in
internal dosimetry. The intent of the paper is to sim-
plify the derivations and perform numerical checks
using Monte Carlo. Also, exact analytical
expressions for the variance of the data are derived
that allow calculation of x2 for statistical self-consist-
ency checking. The type-0 background discussed
here is the basis of most treatments of the classical
decision level (minimum false-positive rates). More
discussion and literature references are given in the
last section of this paper.

Theoretical model

The counting measurement result is some positive
integer N, which is assumed to have a Poisson*Corresponding author: guthrie@lanl.gov
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distribution with mean value denoted by m. The prob-
ability of measuring N counts is then given by

PðNÞ ¼ mNe�m

N!
: ð1Þ

If m is a known constant, this model describes
simple counting measurements. In simple counting
the variance of the number of counts is given by

VarðNÞ ¼ EðN2Þ � EðNÞð Þ2¼ m

¼ EðNÞ; ð2Þ
where

EðNÞ ¼
X1
N ¼ 0

NPðNÞ ¼ m

EðN2Þ ¼
X1
N ¼ 0

N2PðNÞ ¼ m2 þ m:

ð3Þ

Here, the situation where m is given by a known dis-
tribution rather than being constant is considered.
The probability of measuring N counts is then given
by

PðNÞ ¼
ð

dmPðmÞm
Ne�m

N!
: ð4Þ

Thus, the distribution of the measured data is a con-
tinuous mixture of Poisson distributions with differ-
ent values of m.

It is helpful to note two limiting cases of the prob-
ability distribution of the measured number of
counts from Eq. (4). When the average value of m is
small, the composite distribution is Poisson with
mean value equal to the average value of m;
however, at the other extreme the distribution of N
given m becomes a narrow Gaussian, and the distri-
bution of N approaches the distribution of m.

Using Eq. (4) and interchanging summation and
integration, the mean and variance of N are given
by

EðNÞ ¼
X1
N ¼ 0

NPðNÞ ¼
ð

dmPðmÞ mð Þ ¼ EðmÞ

EðN2Þ ¼
X1
N ¼ 0

N2PðNÞ ¼
ð

dmPðmÞ m2 þ m
� �

¼ Eðm2Þ þ EðmÞ

ð5Þ

and therefore the variance is given by

VarðNÞ ¼ EðN2Þ � EðNÞð Þ2

¼ EðmÞ þ VarðmÞ
¼ EðNÞ þ VarðmÞ: ð6Þ

Contrasting Eq. (2) for simple counting with Eq. (6),

one sees that the variance of N is increased by the
variance of m.

In the situation under consideration the true value
of the quantity of interest is denoted by c (for
example, 24-h urine excretion) and is related to m
using the following formula involving a normalisa-
tion coefficient A and a background B:

m ¼ Ac þ B: ð7Þ
In what follows the value of c is assumed to be
given, as is appropriate for the problem of inferring
c from the data. The units of m and B are counts,
while c has some physical units (e.g. Bq), and A has
units of counts per physical unit.

The likelihood function is defined as P(Njc) con-
sidered as a function of c. It is central for statistical
inference (of c) from data (N ), and it is important
to calculate it as accurately as possible. The likeli-
hood function is given by (up to an unimportant
constant multiplicative factor)

LðcÞ/ PðNjcÞ/
ð
mðcÞð ÞNe�mðcÞPðA;BÞdAdB

mðcÞ ¼ Ac þ B;

ð8Þ
In order to calculate the likelihood function one
must properly take into account the correlations
between A and B.

The means (expectation values) of m and m2 are
given by

EðmÞ ¼
ð

Acþ Bð ÞPðA;BÞdAdB

¼ cEðAÞ þ EðBÞ

Eðm2Þ ¼
ð

Ac þ Bð Þ2PðA;BÞdAdB

¼ c2EðA2Þ þ 2cEðABÞ þ EðB2Þ:

ð9Þ

The variance of m is therefore

VarðmÞ ¼ Eðm2Þ � EðmÞð Þ2

¼ c2VarðAÞ þ 2cCovðA;BÞ
þ VarðBÞ; ð10Þ

where the covariance is defined as

CovðA;BÞ ¼ EðABÞ � EðAÞEðBÞ: ð11Þ
It is conventional to define the measurement value
of the quantity of interest, although using exact like-
lihood calculations this turns out not to be essential.
The measurement value will be denoted by y
(measurement value denoted by Roman character y,
true value by Greek character c), and it is given by
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the formula

y ¼ N � B0

A0
; ð12Þ

where B0 is assumed to be the mean value of B and
A0 is chosen to be the median value of A, which
makes the lognormal limit have a simple form as
will be discussed later on. The mean and variance of
y are given by

EðyÞ ¼ cEðAÞ þ EðBÞ � B0

A0

VarðyÞ¼

EðBÞ þ VarðBÞ þ c EðAÞð

þ 2CovðA;BÞÞ þ c2VarðAÞ
A2

0

:

ð13Þ

Background correlations: four types of background
in radiochemical urine measurement

A measurement of urine to determine the activity
excreted in a 24 h period is assumed. In this case,
the normalisation coefficient A is given by

A ¼ Dtx1r1cDtc; ð14Þ
where Dtx is the excretion time associated with the
sample in units of 24 h, 1r is the efficiency of chemi-
cal recovery, 1c is the counting efficiency and Dtc is
the count time. These quantities are assumed to have
independent distributions. In practice, Dtx might be
obtained for each sample from the collection time, if
a true 24-h collection protocol is followed, or from a
volume and specific gravity measurement of the
urine sample(6). The efficiency of chemical recovery
1r might be obtained for each sample from a
measurement of tracer recovery. The uncertainty,
given the measurements (e.g. of volume and specific
gravity or tracer recovery), is what is of concern here.
The counting efficiency 1c is usually measured infre-
quently, and this measured value and an estimate of
its uncertainty is used for many samples. The count
time is usually known very accurately.

Four different types of background B can be ima-
gined depending on where the contamination that
causes the background occurs, as shown in Table 1.
The actual background is assumed to be the sum of
a type-0 background and a background of types 1,
2, or 3. The type-0 background is distinguished by
being independent of the normalisation coefficient
(no covariance).

The quantity b is the random variable represent-
ing the background, 1c the random variable repre-
senting counting efficiency, etc. The quantities with
a tilde above, for example 1̂c, are median values used
for normalisation purposes. The point is that,
depending upon where the background originates, it
has additional random variation caused by the
additional efficiency factors. Thus, the type-1 back-
ground is proportional to b1c and has random vari-
ation because of the variation of the background
itself and also because of variation of the counting
efficiency.

Type-0 background

It is conventional in considering Poisson mixture dis-
tributions to assume the distribution of the Poisson
parameter to be given by a Gamma distribution,
because of the closed form expressions that result.
The true background counting rate l is then
assumed to have the following distribution:

PðlÞdl ¼ Gammaðl;a;bÞdl

;
ba

ða� 1Þ! l
a�1e�bldl

/ la�1e�bldl; ð15Þ
where a and b are parameters. The expectation,
mode and variance are given by

EðlÞ ¼ a

b

lmode ¼
a� 1
b

:

Table 1. Definitions of four different types of background for a radiochemical measurement.

Type Location B Cov (A,B)

0 On the detector itself b 0
1 On the sample (for example contamination in the last stages of the

chemistry)
b 1c
1̂c EðbÞEðDtxÞEð1rÞ Varð1cÞ

1̂c
Dtc

2 In the measured aliquot before chemistry (for example, tracer
contamination)

b 1r1c
1̂r 1̂c EðbÞEðDtxÞ Varð1r1cÞ

1̂r 1̂c
Dtc

3 In the person’s urine (for example, because of environmental intakes) b Dtx1r1c
1̂x 1̂r 1̂c EðbÞVarðDtx1r1cÞ

1̂x 1̂r 1̂c
Dtc
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VarðlÞ ¼ a

b2

Note that the choice of parameters a ¼ 1, b! 0
leads to a uniform (flat) distribution. Because
m ; lT,

EðmÞ ¼ TEðlÞ ¼ a

b0

VarðmÞ ¼ T2VarðlÞ ¼ a

b0
2 ;

ð16Þ

where b0 ¼ b/T.
The type-0 background B0 in Eq. (12) is the mean

value from Eq. (16), and the definition of y becomes

y ¼ N � EðmÞ � B0

A0

¼ N � a=b0 � B0

A0
; ð17Þ

where B0 above refers to the additional background
of types 1, 2 or 3.

From Eq. (6) the variance of y coming from the
type-0 background is

VarðyÞ ¼ EðmÞ þ VarðmÞ
A2

0

¼ 1
A2

0

a

b0
1 þ 1

b0

� �
: ð18Þ

An uncorrelated type-0 background is simply addi-
tive (in variance) to backgrounds of the other types.

The question then becomes: how are the par-
ameters a and b0 to be determined?

Imagine a measurement of the type-0 background
by counting a blank sample for time TB, which is R ¼
TB/T times longer than normal. The number of
detected background counts is denoted by NB. The
Bayesian interpretation of this measurement involves a
prior for the background counting rate l, which is
assumed to be a Gamma function with parameters a0
and b0. By Bayes theorem, the posterior probability of
l is also a Gamma function (see Appendix A):

PðljNBÞ/ PðNBjlÞPðlÞ/ lTBð ÞNB e�lTBla0�1e�b0l

/ lNBþa0�1e�ðTBþb0Þl

/Gammaðl;NB þ a0;TB þ b0Þ: ð19Þ

In this way, the determination a ¼ NB þ a0 and b ¼
TB þ b0 have been made so that b0 ; b/T ¼ (TB þ
b0)/T ¼ R þ b

0

0. This Bayesian method of

determining a and b will be used in the remainder of
this paper.

In the conventional method of treating uncer-
tainty of background, the net counts are N 2 NB/R,
and the variance of net counts is calculated as N þ
NB/R2, using Var(N ) ¼ N for a Poisson deviate N.
When there is no true amount (no radioactivity in
the sample), the gross counts would be given by NB/
R, and the variance of net counts becomes NB/R þ
NB/R2. One can easily go back and forth between
this characterisation of background and the conven-
tional one by using the replacements NB þ a0$ NB
and R þ b

0

0$ R, which might be helpful in adapt-
ing existing software. It is interesting that in the con-
ventional analysis, part of the variance of net counts
comes from the variance of background counts,
while in the analysis here, the number of background
counts varies randomly; however, after a background
measurement, the number of background counts
(the number actually measured) is treated as a given,
without random variation. In the analysis here, the
variance of net counts comes entirely from the
variance of gross counts.

It is also useful to consider the probability distri-
bution of measured background counts, because this
is an observable of interest and, using the definition
of the normalised Gamma function, it can be evalu-
ated in closed form as follows:

PðNja;bÞ ¼
ð

dl
lTð ÞN

N!
e�lT Gammaðl;a;bÞ

¼ 1
ða � 1Þ!

b0

1 þ b0

� �NB þa

ðN þ a � 1Þ!
N!

1
1 þ b0

� �N †

:

ð20Þ

An example of the use of this expression to deter-
mine a and b from an empirical cumulative distri-
bution of N is given in Appendix A.

Lognormal distributions

At this point, a lognormal form is assumed for the
distributions A and B for background types 1, 2
and 3. The lognormal assumption seems a good
choice for two reasons: experimentally in agreeing
with data(7) and also theoretically in that the
product of independent lognormal random vari-
ables is again lognormal, allowing the covariance
terms between the background and the normalisa-
tion coefficient to be evaluated with closed form
expressions.
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The lognormal distribution is given by

dPð f Þ ¼ 1ffiffiffiffiffiffi
2p
p

S
exp

� logð f =f̂ Þ2

2S2

" #
d lnð f Þ; ð21Þ

where f̂ is the median value and S is the logarithmic
standard deviation. One can show using elementary
integration (starting from basics by completing the
square in the exponential) that

ð
f pdPð f Þ ¼ f̂ p exp

p2S2

2

� �
: ð22Þ

Thus,

Eð f Þ ¼ f̂ eS2=2 ; f̂ a

Varð f Þ ¼ f̂ 2a2 a2 � 1
� � : ð23Þ

The mean and variance of A are then given by

EðAÞ ¼ Âaxrc

VarðAÞ ¼ Â2a2
xrc a2

xrc � 1
� � ; ð24Þ

where the combined variance from excretion time,
chemical recovery and counting efficiency is given by

S2
xrc ; S2

x þ S2
r þ S2

c

axrc ; eS2
xrc=2;

ð25Þ

and the median of A is the product of the medians
of the individual factors as follows:

Â ¼ Dt̂x1̂r1̂cDtc: ð26Þ

Choosing A0 to be the median value and B0 to be

the mean value in Eq. (12) gives

EðyÞ ¼caxrcVarðyÞ ¼ s2
0 þ

caxrc

Â
1 þ Cov termð Þ

þ c2a2
xrc a2

xrc � 1
� �

;

ð27Þ

where s0
2 is Var(y) for a zero true amount in the

following sample:

s2
0 ¼

EðBÞ þ VarðBÞ
Â2

: ð28Þ

Table 2 shows the covariance term, s0
2, and E(B) to

allow one to calculate y and Var(y) using Eq. (12),
always assuming a type-0 background and with one
of the other three types of background.

Monte Carlo validation

To validate these rather complex analytical
expressions, a numerical study using Monte Carlo
was carried out. The theoretical results were tested
by calculating x2 defined as follows:

x2
j ¼

ðyj � EðyÞÞ2

VarðyÞ ; ð29Þ

where j denotes the trial and Ntrials is the number of
trials. The expectation value of y is given by E(y) ¼
cE(A)/A0 ¼ caxrc. If the theoretical derivation is
correct and the Monte Carlo generation is done
properly, the average value of x2 must approach one
for a large number of trials.

The parameter values were as given in Table 3.
The type-0 mB is generated from a Gamma distri-

bution Gamma(mB/TB, a0, b0), and then this mB
was used to generate a number of background
counts NB from a Poisson distribution. Given this
value of NB, type-0 m was again generated from
Gamma(m/T, NB þ a0, TB þ b0). Then values of A
and B are generated from their lognormal distri-
butions and Eq. (7) is used to calculate the total m.

Table 2. Expressions for terms in formula for Var(y) for different types of background.

Type Cov term s2
0Â2 E(B)

0 0 NB þa0
Rþb00

1 þ 1
Rþb00

� �
NB þa0
Rþb00

1 2b̂abc (ac
2 2 1) b̂abc 1þ b̂abc a2

bc � 1
� �� �

b̂abc

2 2b̂abrc (arc
2 2 1) b̂abrc 1 þ b̂abrc a2

brc � 1
� �� �

b̂abrc

3 2b̂abxrc (axrc
2 2 1) b̂abxrc 1 þ b̂abxrc a2

bxrc � 1
� �� �

b̂abxrc
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The gross counts N are then generated from the
Poisson distribution with this value of m. Equation
(17) is used to calculated yj. In Eq. (29), Var(y) is
calculated from Eq. (27) and Table 2.

Results are given in Table 4 for the four back-
ground types (Ntrials ¼ 106). The analytical
expressions are confirmed by these results.

Generalisation, shared uncertainty of background

In this section, a synthesis of the foregoing is made
by introducing the notion of shared uncertainty. The
normalisation coefficient A is assumed to have log-
normal standard deviation S from all factors.
Instead of considering separately backgrounds of
types 1, 2 or 3, it is assumed that some portion Ss of
S is shared with the background, where 0 � Ss � S.
The background is now characterised by its median
value in physical units B̂, where in terms of the pre-
vious notation, b̂/A0 ¼ B̂. The lognormal back-
ground is assumed to have logarithmic standard
deviation Sb. Then

VarðyÞ ¼ s2
0 þ

ac
A0
þ 2acB̂abs a2

s � 1
� �

þ acð Þ2 a2 � 1
� �

; ð30Þ

where

s2
0 ¼

1
A2

0

NB þ a0ð Þ
R þ b00

1 þ 1
R þ b00

� �

þ B̂abs 1 þ B̂abs a2
bs � 1

� �� �
is the variance for the zero true amount and

a ; eS2=2

as ; eS2
s =2

ab ; eS2
b=2

abs ; eS2
bs=2 ¼ eðS

2
bþS2

s Þ=2:

ð31Þ

This form reproduces the various types of back-
ground correlations discussed above.

An alternate approximate form of Eq. (30), which
contains the conventional ‘counting uncertainty’, is
obtained by substituting

ac
A0
¼ EðNÞ � ðNB þ a0Þ=ðR þ b00Þ � A0B̂abs

A2
0

;

ð32Þ

from Eqs (12) and (17) and using E(N ) ffi N, which
gives

VarðyÞ ffi s2
c þ s2

b þ 2ac B̂abs a2
s � 1

� �
þ acð Þ2 a2 � 1

� �
s2

c ;
1

A2
0

N þ NB þ a0

ðR þ b00Þ
2

 !

s2
b ; B̂abs

� �2
a2

bs � 1
� �

;

ð33Þ

where N is the number of detected gross counts and
NB is the number of detected background counts.
This form separates out the uncertainty sc coming
from counting statistics with a constant normalisa-
tion coefficient and the variance of the background
sb. The additional terms result from a non-constant
normalisation coefficient.

In terms of shared uncertainty, the likelihood
function is given by

LðcÞ/ PðNjcÞ/
ð

dPðAnÞ dPðAsÞ dPðbÞ dPðm0Þ

mðcÞð ÞNe�mðcÞmðcÞ ¼ A0AsðAnc þ bÞ þ m0;

ð34Þ

Table 4. Results of Monte Carlo validation study (x2 5 1 is
the expected result).

Type c Average x2

0 0 1.011+0.003
1 0.994+0.002

10 0.997+0.003
1 0 0.989+0.008

1 0.999+0.007
10 0.993+0.003

2 0 0.998+0.010
1 1.007+0.008

10 1.002+0.003
3 0 0.999+0.011

1 0.972+0.010
10 1.010+0.006

Table 3. Parameter values used in the Monte Carlo
validation study.

Parameter Value

Â 1000 count Bq21

Dtc 5333 s
Dtx Median ¼ 1, S ¼ 0.5
1r Median ¼ 0.75, S ¼ 0.05
1c Median ¼ 0.25, S ¼ 0.05
Type-0 background a0 ¼ 1, b

0

0 ¼ 2
Other type background Median:b̂ ¼ 2 counts, S ¼ 1
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where the lognormal normalisation coefficient A is
factored into two lognormals As and An with
median values 1, where As is shared with the lognor-
mal background b (b is now the actual background
in physical units) and An is not shared. The type-0
background m0 comes from the distribution
Gamma(m0/T, NB þ a0, TB þ b0) as already
discussed.

The four-dimensional integration in Eq. (34) can
be done using Monte Carlo, where An, As and b are
generated from lognormal distributions and m0 is
generated from a Gamma distribution. In order to
have fast computations involving likelihood func-
tions, for example for use in calculating Bayesian
integrals, a table of values of the likelihood function
is calculated numerically for each measurement, and
these results are stored for use in repeated interpola-
tions. It is important to recognise that the likelihood
function is the statistical expression of the data and
is independent of subsequent interpretation of the
data.

When the counts are large and the lognormal dis-
tributions are narrow (S small) so that they are
approximately normal, one can use the fact that,
considered as a function of x,

xn expð�xÞ/ exp � 1
2n
ðx� nÞ2

� �

ffi exp � 1
2

lnðx=nÞ
1=

ffiffiffi
n
p

� �2
 !

ð35Þ

for large n. Both the Poisson term and the Gamma
distribution can then be approximated as normal
distributions, and Eq. (34) becomes the convolution
of normal distributions and is approximately

LðcÞ/ 1
sðcÞ exp � 1

2
y � ac
sðcÞ

� �2
 !

; ð36Þ

using Eq. (30) for s2 (c) ¼ Var(y).
Another approximation that applies when the nor-

malisation uncertainty is not small is the lognormal

LðcÞ/ exp � 1
2

lnðy=cÞð Þ2

S2
tot

 !

S2
tot ¼ S2 þ sc=yð Þ2

; ð37Þ

where sc is the counting uncertainty of y without
considering normalisation uncertainty. The likeli-
hood function is then approximately lognormal. In
comparing Eqs (36) and (37), one sees that Eq. (37)
has a simpler form without the quantity a that
occurs in Eq. (36). If the quantity A0 in Eq. (12)
had been chosen to be the mean rather than the
median, Eq. (36) would take the simpler form.

Comparisons of these approximations with the
exact likelihood calculation are shown in Figure 1.

Figure 1 demonstrates that in some cases with
large numbers of detected counts, the exact likeli-
hood and normal and lognormal approximations
are all in fairly good agreement, which serves as a
basic validation of the numerical methods.

Figure 2 shows the effect of adding in the logar-
ithmic background with parameters given in
Table B1.

The result shown in Figure 2 is unexpected. The
standard deviation of the background for the S ¼ 2
is about 200 counts, while the exact likelihood func-
tion is much narrower than this. This can be under-
stood by remembering that the likelihood function is
premised on the measurement of a certain number,
20, of counts, and if 20 counts have been measured
it is not possible for the likelihood function to be
appreciable at 200 counts, as it would be using the
normal approximation where the background var-
iance has been added into the denominator. Thus,
the large c portion of the likelihood function does
not move out as the background is increased, and
the width of the likelihood function is misrepre-
sented by the standard deviation of y.

Also, crucial in the Bayesian interpretation of the
data in a situation where true positives are rare is
the value of the likelihood function at c ¼ 0,
because the prior is then strongly peaked at c ¼ 0.
The posterior distribution of c can be completely
changed by having an additional background. To
obtain an accurate value of the likelihood at c ¼ 0
requires the exact likelihood calculation. This is an
important reason for using the exact likelihood

Figure 1. Likelihood function calculations for the uranium
parameters as given in Table 5 assuming 20 counts have
been detected, but assuming no lognormal background.
The exact expression is shown together with the normal

and lognormal approximations.
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calculations in such cases. An example involving
detection of 234U in urine is given in what follows.

Measures of statistical self-consistency

One can calculate x2 (c) using the posterior mean as
an estimate of the true value in order to check that
x2/Ndata is not much larger than one and that the
model is therefore not statistically inconsistent with
the data. The formulas given here allow exact
calculation of x2 (c) within this statistical
model. However, in practice a better ‘x2’ is found to
be xlike

2 given by two times the posterior average of
the log of the likelihood function, because of slow
convergence of x2/Ndata with respect to Ndata for log-
normally distributed data, as discussed in Appendix
C. For data that is approximately lognormally
distributed, the log-transformed x2, similar to
Eq. (37), given by

x2
LN ¼

XNdata

j¼1

lnðyj=cÞ
� �2

S2
tot;j

does not have the slow convergence problem, and is
more appropriate. As shown by Eq. (37), the quan-
tity xlike

2 reduces to xLN
2 in this limiting case. Hence,

in both the cases of normally or lognormally distrib-
uted data, the quantity xlike

2 , obtained from the exact
likelihood calculation, reproduces the appropriate
expressions for x2 and therefore seems a reasonable

general choice as a measure of statistical self-
consistency.

For a visual representation of the exact likelihood
function one can use the maximum, as the central
point, and the width of the likelihood function, as
error bars. The upper width estimate is obtained by
treating the likelihood function as a probability dis-
tribution and computing the difference between the
true value at the maximum and the larger true value
where the probability has decreased to exp(21/2) of
the maximum, and similarly for the lower width esti-
mate. Then, visually, one can compare two posterior
distributions of the true value of the measured quan-
tity, one, the data point and error bars, from the
single data point itself at the time of the measure-
ment and the other, a curve, showing the posterior
mean for all times obtained using all the data. The
width of the posterior mean using all the data is
relatively small and usually need not be shown. For
the modelling to be self-consistent the two posteriors
should be self-consistent; that is, there should not be
many points that are a large number of standard
deviations from the curve.

What is the significance of all this for internal
dosimetry?

In order to understand the practical significance of
all this, a specific example is considered. Urine
samples are taken from a person, and one would
want to infer if occupationally related 234U is
present. As discussed in Appendix B, a lognormal
environmental background of 234U is assumed with
a median value ¼b̂/A0 ¼ 1 mBq and logarithmic
standard deviation Sb ¼ 2. Simulated urine data are
generated assuming that an intake occurred on 10
March 2005, corresponding to a dose of 5 mSv,
CED. The data are shown in Table 5.

The normalisation uncertainty is S ¼ 0.3, the
type-0 background has a0 ¼ 2 and b

0

0 ¼ 0.375, and
there is an environmental background as already dis-
cussed, with median value 1 mBq and S ¼ 2. All the
lognormal uncertainty is shared, and Ss ¼ 0.3. There
is a 5-mSv, type S, 5-mm AMAD inhalation intake
occurring on 10 March 2005.

A data plot is shown in Figure 3.
The data uncertainty is dominated by the uncer-

tainty of the environmental background, with a stan-
dard deviation of about 60 mBq. As seen in
Figure 3, none of the data exceed even a single stan-
dard deviation, so the classical decision level method
with a decision level of 1.645 standard deviations
leads to a no-intake interpretation.

Figure 4 shows the data along with the calculated
Bayesian interpretation. Exact likelihood function
calculations were used and are essential.

The data is represented as the maximum and
width of the exact likelihood as already discussed.

Figure 2. Exact likelihood function calculations for the
uranium parameters as given in Table B1 assuming that 20
counts have been detected. An additional lognormal
background is assumed with a 4-count median as given in
Table B1. Two cases are shown: (1) the background has
logarithmic standard deviation S ¼ 2 as given in Table B1
(median 4 counts, standard deviation 238 counts) and (2)
the background has logarithmic standard deviation S ¼ 0

(median 4 counts, standard deviation 0).
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The upper width estimate is obtained by treating the
likelihood function as a probability distribution and
computing the difference between the true value at
the maximum and the larger true value where the
probability has decreased to exp(21/2) of the
maximum, and similarly for the lower width estimate.

The Los Alamos ID code (version IDT.0e) was
used(8,9). There were 40 (potential) intakes with vari-
able times situated in the 40 monitoring intervals
between bioassay data points. The prior probability of
the date of intake was uniform within each monitor-
ing interval. The prior probability of intake amount
for each intake was given by the alpha prior(10) with a
probability of intake a ¼ 0.001 per year, correspond-
ing to real intakes being very rare. Nine inhalation
biokinetic models were allowed: types F, M and S for
1, 5 and 10 mm AMAD, respectively. The prior prob-
abilities of all biokinetic models are equal.

The reconstructed 2005 CED is shown in
Figure 5. Two independent MCMC chains are run

Figure 4. Simulated 234U urine data and the Bayesian
interpretation. The plot displays the data as the maximum
and lower and upper width estimates obtained from the

exact likelihood function.

Figure 3. Simulated 234U urine data. There is a single
intake, on 10 March 2005, corresponding to a dose of 5

mSv, CED.

Table 5. Simulated 234U urine bioassay data.

Date y (mBq) sc (mBq) N NB f

19 July 2004 1.10 1.72 36 21 0.283
2 August 2004 0.82 1.36 44 9 0.204
16 August 2004 26.80 0.76 8 19 0.255
30 August 2004 26.73 1.37 18 64 0.297
13 September 2004 0.81 1.63 30 5 0.296
27 September 2004 26.30 0.95 14 35 0.239
11 October 2004 28.48 0.24 0 10 0.328
25 October 2004 24.11 1.25 16 18 0.304
8 November 2004 28.19 1.02 4 22 0.448
23 November 2004 20.91 1.44 26 7 0.280
7 December 2004 7.77 2.59 61 57 0.323
21 December 2004 28.15 0.19 0 5 0.368
4 January 2005 29.29 1.41 6 40 0.497
18 January 2005 27.20 0.81 5 15 0.335
1 February 2005 20.34 1.80 25 18 0.354
15 February 2005 22.40 1.55 28 40 0.283
1 March 2005 27.51 0.61 4 14 0.280
15 March 2005 18.73 3.72 64 28 0.459
29 March 2005 23.10 1.78 15 20 0.444
12 April 2005 0.88 1.88 37 37 0.301
26 April 2005 4.49 1.74 51 3 0.243
10 May 2005 24.80 0.96 17 18 0.227
24 May 2005 25.74 1.53 15 42 0.369
7 June 2005 24.26 1.57 8 7 0.542
21 June 2005 9.08 2.28 73 40 0.263
5 July 2005 4.40 2.14 41 19 0.331
19 July 2005 25.53 0.89 15 22 0.221
2 August 2005 26.21 0.76 13 24 0.202
16 August 2005 25.92 0.73 9 6 0.238
30 August 2005 25.87 1.11 19 49 0.238
14 September 2005 23.03 1.53 14 10 0.401
28 September 2005 24.35 1.15 16 17 0.279
12 October 2005 32.81 3.46 142 10 0.290
26 October 2005 24.61 1.27 12 14 0.355
9 November 2005 25.51 0.83 12 11 0.234
23 November 2005 24.93 1.00 14 14 0.259
7 December 2005 25.69 1.19 10 19 0.360
21 December 2005 20.52 2.54 32 66 0.426
4 January 2006 7.34 2.62 46 28 0.381
18 January 2006 25.08 1.28 10 14 0.390
1 February 2006 24.88 1.39 13 23 0.368

The measured quantity is the 24-h urine excretion. The
quantity of interest y (urine 24 h) is given by f(N 2 NB/R)
2b, where b is the lognormally distributed background
with median value 1 mBq and S ¼ 2 (apparent average ¼
7.73 mBq) and R ¼ 4.375. The quantity sc is the counting
uncertainty of y without considering normalisation
uncertainty. The quantities NB and R are modified by the
Bayesian replacements NB þ a0! NB and R þ b

0

0! R
with a0 ¼ 2 and b

0

0 ¼ 0.375.
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to check convergence, with different random number
seeds and the most extreme starting points (smallest
and largest values). To obtain the degree of conver-
gence shown required about a third of a billion
(3.2 � 108) iterations of the chain! The computing
time was about 100 min using a 3-GHz workstation.

The probability(11) of the hypothesis that intakes
have occurred is 99 %; however, as seen in Figure 5
the probability of a very small dose is about 14 %.
By the hypothesis test, some occupational dose is
quite certain, and the dose would be reported. The
two criteria (posterior probability of two hypotheses
and posterior probability of total CED) are expected
theoretically to be the same when the intake prior is
a mixture of a delta function at zero and another
distribution separated from zero. The two criteria
were found to give reasonable agreement in a study
of single-intake situations.

In Bayesian hypothesis, testing the probability of a
hypothesis is proportional to the average of the like-
lihood function over the prior, which is 2 � 10219

for the interpretation shown in Figure 5 and 2 �
10221 for the no-intake hypothesis. As shown in
Table 6, there is a difference of five orders of magni-
tude between averaging over the prior and posterior.
Classical hypothesis testing would compare the
maximum likelihood values of x2, which is similar
to comparing posterior average values.

Note that hypothesis testing asks which of the two
hypotheses is most likely given the data. Statistical
self-consistency testing is more open ended. It asks
whether the collection of biokinetic models and

indeed the entire formulation is adequate to rep-
resent the data.

In this example, it is seen that detecting an occu-
pational intake of type S uranium, even as large as 5
mSv CED, is completely impossible using the classi-
cal decision level approach, whereas using a
Bayesian approach with exact likelihood calcu-
lations, the intake is detected with 99 % probability
and with the posterior mean value within 30 % of
the correct value.

DISCUSSION

The present work corrects an important error in a
previous paper. The discussion of the Gaussian
approximation to the exact likelihood function in
Ref. 3 erroneously contains the expression NB þ a2
1, where it should properly be NB þ a. The zero
background count problem is simply taken care of
with the uniform-prior Bayesian approach (a ¼ 1, b
! 0), as shown here and elsewhere.

The Bayesian approach to statistical inference in
counting measurements has been treated very well
before, two notable examples being refs (12) and (13).
In ref. (12), the authors derive the posterior distri-
bution of the true counting rate given the measured
number of counts without explicit reference to Bayes
theorem with only the comment ‘a little thought will
show that . . . [the Poisson formula] is also the solution
of the inverse problem’ . . . That is, the authors ‘little
thought’ has come up with the uniform-prior Bayes
formula. Ref. (13) contains a full, explicitly Bayesian
treatment of the problem including a good discussion
of prior probability distributions. Ref. (14) contains a
uniform-prior Bayesian treatment of the net counting
rate with no radioactivity in the sample.

Relative to Refs. (4) and (5), the ‘shared’ uncer-
tainty of a lognormal background defined here cor-
responds to the ‘measurement’ uncertainty sm in
these papers, and the results are in agreement in
regards to this background. However, the treatment
of the uncertainty related to measured background

Figure 5. Posterior distribution of 2005 CED. The two
curves are for different MCMC runs with different random
number seeds and different starting points. The
number of chain iterations for this degree of convergence

was 3.2 � 108.

Table 6. Numerical values of quantities used for hypothesis
testing.

Hypothesis No intakes Intakes

Quantities
xlike

2 2.4 � 40 1.6 � 40
exp( 2 xlike

2 /2) 1.4 � 10221 1.3 � 10214

Likelihood-prior average 2 � 10221 2 � 10219

Likelihood-post average 2 � 10221 4 � 10214

By comparing the likelihood function averaged over the
prior for the two hypotheses, one concludes that the
probability of no intakes is about 1 % (for equal prior
probability of the two hypotheses).
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counts NB differs because of missing the contri-
bution from Var(m) in Eq. (6) (for this background,
m was treated as constant in these papers).

It is interesting to compare the formula for s0
2Â2

in Table 2 with the work of Strom and
MacLellan(15). They state eight different formulas
for the closely related classical decision level. The
flat prior result here (a ¼ 1, b! 0) matches
the Bayesian result given by their Eq. (9), where the
decision level for net counts is stated as
ka=TB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNB þ 1Þð1=Rþ 1=R2Þ

p
with ka found from

a cumulative normal distribution with a specified
upper tail area a representing the false-positive rate.

Since for small numbers of counts the distributions
are far from normal, for calculation of false-positive
rates with a classical decision level, it would seem
better to use the Eq. (20) to obtain the probability
distribution of gross counts as illustrated in Appendix
A, as has been discussed by Justus(16). This allows
straightforward calculation of an integer gross-count
alarm set point with a desired false-positive rate.
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APPENDIX A—EXAMPLES OF ANALYSIS OF
TYPE-0 BACKGROUND

For this example, it is assumed that three back-
ground counts have been detected with a uniform-
prior probability distribution of the true background
counting rate. A Fortran program that calculates the
posterior distribution of counting rate using Monte
Carlo is shown in Figure A1.

The Monte Carlo-generated distribution of the
true counting rate is shown in Figure A2.

Assuming that a and b0 are known, the distri-
bution of counts N coming from the background (no
radioactivity in the sample) would be as shown in
Figure A3.

The prior parameters a and b can also be deter-
mined empirically from a large data set. For
example, using the 234U data already discussed for
some 8000 measurements, the empirical cumulative
distribution of background counts is as shown in
Figure A4, where the parameters a and b were
determined by trial and error, guided by the fact
that the most probable value of NB is (a 2 1)TB/b.

Assuming a Gamma-function prior, the expected
distribution of background counts is given by Eq.
(20), the cumulative distribution of which is the
curve shown in Figure A4. The calculations used the
FACT function in Excel to evaluate the factorial,
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which allows only integer values of a, but that
seems adequate. The distribution shown in
Figure A4 is likely to be a mixture of several distri-
butions that would best be separated, for example,
separate distributions for each physical detector
during limited periods of time around the time of
the sample measurement.

The method illustrated in Figure A4 could be
applied to determine the parameters a0 and b0
empirically.

APPENDIX B—URANIUM IN URINE

For bioassay of uranium in urine, there is an important
environmental background caused by uranium in food
and drinking water. Many people have uranium in
their bodies from environmental intakes and always

excrete a certain amount of uranium. This amount is
highly variable for a single person and also from
person to person(17). It is assumed that this back-
ground in urine results from randomly occurring
dietary intake of soluble (e.g. type-F) uranium. The
appendix uses data from Los Alamos to parameterise
the form and magnitude of this background.

Figure B1 shows data from Los Alamos (with
type-0 background subtraction) for the five individ-
uals with the largest number of urine measurements
(about 200 measurements). The number of occu-
pational intakes is very small, and hence this

Figure A3. Monte-Carlo generated distribution of gross
counts and analytical formula assuming no radioactivity in
the sample and that the background counting rate is given
by a Gamma distribution with a ¼ 4, b/T ¼ 6. Such a
curve can be used to calculate alarm set points on gross

counts for a specified false-positive rate.

Figure A4. Empirical cumulative distribution of
background counts for 234U. The curve assumes a Gamma

function prior to parameters as indicated.

Figure A1. Fortran program that calculates the
distribution of true counting rate given a uniform prior and
that three background counts have been observed. The
function iPoisson (m) returns an integer from a Poisson

distribution with mean value m.

Figure A2. Monte-Carlo generated distribution of true
counting rate, given that three counts have been detected.
As shown, the distribution is a Gamma distribution with

parameters a ¼ NB þ 1, b ¼ TB.
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distribution is assumed to be the result of environ-
mental intakes only. The data that appear in the plot
are at least three standard deviations positive (count-
ing statistics only). The reason for this is so that the
distribution represents the underlying distribution of
uranium in urine, not confused by measurement
uncertainty. Thus, the cumulative distributions begin
with the percentage of results that are less than three
standard deviations positive. The distributions are
seen to be roughly lognormal.

For the sake of having a single, rather extreme,
numerical example, it is assumed that a possible
value of lognormal environmental background of
234U is a median value ¼b̂/A0 ¼ 1 mBq and logar-
ithmic standard deviation Sb ¼ 2. Other assumed
parameter values are shown in Table B1.

Table B1. Numerical example of the environmental
background.

Parameter Value

A0 (count Bq21) 4000
NB 16
R 4
a0 2
b
0

0 0.375
Sx 0.3
Sr 0.05
Sc 0.05
Sxrc 0.308
axrc 1.049
Sb 2.000
ab 7.389
abxrc 7.751
Sbxrc 2.024
b̂ (count) 4

The variance of y is then given by

VarðyÞ ¼ 1
A2

0

NB þ a0ð Þ
R þ b00

1 þ 1
R þ b00

� �

þ 1
A2

0

b̂abxrc 1 þ b̂abxrc a2
bxrc � 1

� �� �

þ axrcc

A0
1 þ 2b̂abxrc a2

xrc � 1
� �� �

þ axrccð Þ2 a2
xrc � 1

� �
VarðyÞ ¼ 0:316 mBq2 þ 3550 mBq2 þ c 1:9 mBq

þ c20:11

ðA:1Þ

In estimating the lognormal standard deviation of
the environmental background, note that what is
obtained from background data is Sbxrc so that Sb

2 ¼
Sbxrc

2 2 Sxrc
2 , and one needs to be aware of the effect

of measurement uncertainties. For the zero true
amount, Var(y) in Eq. (A.1) is very nearly the same
as the variance of the lognormal background alone
((59.6 mBq)2 ¼ 3550 mBq2). The term linear in c is
increased by a factor of more than 6 (¼2b̂abxrc
(axrc

2 2 1)) because of the lognormal background.

APPENDIX C—WHY LOGNORMAL DATA
ARE PROBLEMATIC IN PRACTICE

For a lognormal background with large S, the value
of x2/Ndata does not converge to its limiting value
until Ndata is quite large, because only very occasion-
ally do the large fluctuations that dominate x2 occur.
This phenomenon is illustrated by the Monte Carlo
calculation shown in Table C1.

Table C1. x2 calculated around the true theoretical mean
value with respect to the true theoretical variance for

lognormal data with S 5 2 and S 5 1.

Ntrials Average x2

S ¼ 2 S ¼ 1

101 0.008+0.002 0.434+0.173
102 0.045+026 0.876+0.397
103 0.147+0.049 0.943+0.188
104 0.233+0.042 0.877+0.074
105 0.474+0.066 0.945+0.034
106 0.719+0.089 0.999+0.011

For large S, this demonstrates very slow convergence and
that the statistical standard deviation (shown after the +)
can be misleading.

Figure B1. Observed cumulative distribution of 234U
activity in urine for five Los Alamos workers. Only results
greater than 3 standard deviations (from counting statistics)
positive are shown. The distributions are roughly lognormal

with quite large geometric standard deviations (GSD).
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