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Abstract — A new numerical method for solving the inverse problem of internal dosimetry is described. The new method uses
Markov Chain Monte Carlo and the Metropolis algorithm. Multiple intake amounts, biokinetic types, and times of intake are
determined from bioassay data by integrating over the Bayesian posterior distribution. The method appears definitive, but its
application requires a large amount of computing time.

INTRODUCTION

Internal dosimetry is concerned with the problem of
determining the radiation dose to workers caused by
forms of radiation that cannot be measured directly (as
with a dosimetry badge). If, for example, the �-emitting
nuclide 239Pu is inhaled, it will impart radiation dose to
the lungs, and after dissolving will be absorbed to blood
and deposited in the bone and liver, imparting dose to
these organs. Monitoring for exposure to 239Pu is done
by making bioassay measurements (for example, urine,
faecal, lung count, etc.).

The measurements are interpreted using biokinetic
models that describe how 239Pu is transported through
the body. The biokinetic models describe how a unit
amount of material taken into the body in a certain way
(for example, inhalation) will later in time appear in
various bioassay compartments (for example, the lungs,
urinary excretion) and how radiation dose will be
accumulated in the course of time in the different body
organs and tissues. Standard biokinetic models have
been proposed by the International Commission on
Radiation Protection (ICRP) (e.g., ICRP publications
30, 54, 66, and 78)(1–5).

Given a set of agreed-upon biokinetic models, the
inverse problem of internal dosimetry is to use the
bioassay measurements to infer if and when intakes may
have occurred and the magnitude of the resultant
radiation dose to the worker. In using intake-based
biokinetic models a determination of the time and
amount of intakes and an assessment of the 50 y
effective whole body dose to the worker (the CEDE)
associated with each intake is required. The process
obviously entails considerable uncertainty, so quantitat-
ively assessing uncertainty is also of great importance.
The authors have been pursuing a Bayesian statistical
approach to this problem(6–11). The present work
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describes a method that extends the previous work and
appears to be definitive.

FORMULATION OF THE PROBLEM

In the problem of internal dosimetry there are M
bioassay data yj taken at times tj for j = 1,M. From these
data the determination of N possible intakes with
amounts �i, biokinetic types li, times of intake ti, for
i = 1,N is sought. The intake times are ordered, so that
t1 � t2 � . . .tN. The domain of time ti is the time inter-
val �ti. That is, ti is in the interval �ti. The intervals �ti

cover the time domain of all possible intakes in a non-
overlapping and ordered way. The time intervals are
often chosen to be the times between successive bioas-
say measurements, in which case N = M − 1. The time
intervals are chosen to be sufficiently small so that mul-
tiple intakes are unlikely in any interval.

Using the notation

Y � �y1,y2,. . .yM� (1)

� � ��1,l1,t1,. . .�N,lN,tN�, (2)

the problem is to determine the parameters � from the
data Y. Using Bayes’ theorem, the probability distri-
bution of � given Y can be immediately written
down as

P(��Y) � P(Y��)P(�) (3)

that is, the probability of particular values of the para-
meters given the data is proportional to the probability
of the measured values of the data given the parameters
(the likelihood function) times the prior probability of
the parameter values. The calculational problem is then
to integrate (or sum) over the full detailed posterior
probability distribution function in order to determine
the marginal probability distribution of quantities of
interest. The multi-dimensional integration problem is
well suited to the Markov Chain Monte Carlo
Method(12) using the Metropolis algorithm (see
Appendix 1)(13).
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The likelihood function P(Y��) is of the form

P(Y��) � exp ��Mj=1

�j(�)� (4)

because of the assumed independence of the M
measurements, where �j(�) is the log-likelihood
function for the jth measurement.

The prior probability distribution P(�) is taken to be
of the form

P(�)d� = �N
i=1

P(�i) d�i P(li)P(ti) dti (5)

The prior probability distribution of biokinetic types l
is a discrete probability distribution over �l1,l2,. . .,lni

�,
usually uniform except that the ICRP-recommended
default model is given a higher probability.

The prior probability distribution for �i and ti depends
on whether or not a known incident has occurred in the
intake time interval �ti. Two cases are considered, an
incident reported in the time interval (incident) and no
report of an incident (non-incident).

Incident

The prior probability distribution over intake time
P(ti) is assumed to be

P(ti) = �(ti − ti
(inc)) (6)

where �(.) is the delta function, and ti
(inc) is the known

time of the incident. The prior probability distribution
over intake amount �i is assumed to be a broad log-
normal (standard deviation of the log of �i equal to 3)
with median determined by incident indicators (for
example, nose swipe results, air monitor readings) as
discussed in Reference 11.

Non-incident

If no incident has occurred in the intake interval �ti,
the prior probability distribution of intake time ti is
assumed to be uniform in the interval �ti, and the distri-
bution of intake amount �i is assumed to be given by
the following (a special case of the gamma distribution),

P(�i) d�i =
�i�ti

�i
	 �i

�(max)
i


�i�ti
(7)

which has been called the ‘alpha distribution’(11). The
parameter �(max)

i specifies the maximum intake allowed
and otherwise is unimportant. The parameter �i, which
can be interpreted as the ‘intake’ probability per unit
time in the ith time interval, is meant to be determined
empirically using population averages. Using Los
Alamos plutonium historical data from 1980 to the
present � was found to be very small, 0.001 y−1 or

less(11). The smallness of � shows that the internal
dosimetry problem for non-incident-related intakes is a
‘needle-in-the-haystack’ problem of detecting very rare
events. In such cases Bayesian methods avoid an inordi-
nate number of false positives.

The likelihood function P(Y��) gives the probability
of measuring data values Y given parameters �, con-
sidered as a function of �. In this paper it is assumed
that the Gaussian approximation for the likelihood func-
tion is applicable. In this case

�j(�) = −
1
2 	(yj − �(l)

j )2

	2
j

+ log(	2
j )
 (8)

Here yj is the measurement value, �(l)
j is the calculated

value based on the parameters, in particular the bioki-
netic type l, and 	j is the uncertainty standard deviation
associated with the jth measurement. The calculated
value is given by

�(l)
j = �N

i=1

�if(l) (tj − ti) (9)

where �i is the magnitude of the ith intake, f(l)(t) is the
biokinetic retention fraction for biokinetic type l at time
t after the intake, and tj and ti are the times of the jth

measurement and the ith intake. Note that f(l) (tj − ti) = 0
for tj � ti. The uncertainty 	j is composed of measure-
ment uncertainty 	(m)

j and a multiplicative factor un-
certainty 	(f)

j (for example, for a lung count, the
measurement uncertainty would be the counting stat-
istics uncertainty, while the multiplicative factor uncer-
tainty would be the estimated uncertainty of the cali-
bration factor, which is mostly associated with chest
wall absorption uncertainty).

	2
j = (	(m)

j )2 + (	(f)
j �(l)

j )2 (10)

NUMERICAL ALGORITHM

Using the Metropolis algorithm(13) a Markov chain of
the parameter values � is generated that has as its
stationary distribution the joint posterior distribution (a
multivariate distribution, because � is a vector) of Equ-
ation 3 (see Appendix 1)(12). A Markov chain is a
sequence of random variables �k such that �k+1

depends on � and does not depend further on the history
of the chain. Given such a chain it is possible to effec-
tively integrate over the posterior distribution by using
the relation

� f(�) P (��Y) d� → 1
Nk

�Nk

k=1

f(�k) (11)

for Nk → 
, where f(.) is an arbitrary function of �.
The three parameters (�i,li,ti) of intake i as the ith

component of the intake vector � are lumped together
and these components are chain updated one by one.
The intake components are selected for updating proba-
bilistically, with probability given by
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Pi � Max(CEDEi, CEDEmin) (12)

that is, the attention given to the ith component is pro-
portional to the current CEDE associated with the ith

intake. However, for CEDEs below the lower limit
CEDEmin, all components are given equal attention. The
lower limit CEDEmin is usually chosen to be 0.1 mSv
(0.01 rem).

The components �i are updated using a probabilistic
random walk scheme, where with some given prob-
ability (a parameter of the code) the new value is selec-
ted within a small neighbourhood of the current value
(random walk), or, with the complement of that prob-
ability, the new value is generated from the entire
domain.

The chain has a starting value �0 that influences to
some extent average values obtained from Equation 11
for finite numbers of trials Nk. The pseudo-random num-
bers used to generate the chain also have a seed value
that determines the sequence. Our approach to conver-
gence of results is to compare results from two chains
with different random number seeds, one starting from
the minimum allowed value of � and the other starting
from the maximum allowed value.

A code validation test case is described in
Appendix 2.

EXAMPLE USING ACTUAL DATA

In Figure 1 are shown actual Los Alamos urine data
for 238Pu urine excretion from a single individual over
a number of years. The error bars represent plus or
minus one standard deviation of the measurement uncer-
tainty. In addition, it is known that this person was
involved in an incident on 31 October 1980. The inci-
dent classification indicates a relatively low probability
of an inhalation intake resulting from the incident. This
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Figure 1. Actual 238Pu urine excretion data.

case was discussed in Reference 14 as example 3, and
the data are available in the file BIOASSAY.333 down-
loadable from the Los Alamos web site(15) (in the
software package BayesII). In interpreting these data,
the ‘wing-9 accident’ biokinetic model(9) was used in
addition to the six standard ICRP 30 biokinetic models
(class W and class Y, 0.2, 1.0, and 5.0 �m AMAD par-
ticle size).

In Figure 2 is shown the urine excretion data together
with the calculated expected value. The median of the
log-normal prior for the 1980 incident was chosen to be
37 Bq (1 nCi). There is actually only one ‘positive’
intake, using the definition of ‘positive’

P(CEDE � 1 mSv (0.1 rem)�data) � 0.95. (13)

The most probable biokinetic type for this intake is the
special wing-9 type (IEE) with 55% probability.

In Figure 3 are shown the year-by-year CEDEs lump-
ing together all intakes occurring in a given year. The
square symbols represent the magnitude of the expected
CEDE for each year while the shaded bars show the
90% credible interval (5% to 95%) for those cases
where the upper limit exceeds 1 mSv (0.1 rem). For
1981, the authors do not have confidence that the CEDE
exceeds 1 mSv since the lower credible limit does not
exceed 1 mSv. The total expected CEDE for all years
is 520 mSv (52 rem) with 5% and 95% credible limits
of 410 to 620 mSv.

The error bars in Figure 2 are larger than those in
Figure 1 because they include multiplicative uncertainty
in addition to measurement uncertainty. The quantity
	(f) in Equation 10 was assumed to have the value 0.3,
which is the value normally assigned for simulated 24 h
urine samples.
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Figure 2. Urine data (�) and calculated expected value (——) of
urine excretion.
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In Figure 3 note that in some cases the expected value
of CEDE exceeds 1 mSv while the 95% limit does not.
This is possible for distributions mostly concentrated at
small values but having a tail extending to large values.

If the incident information is not used to analyse the
data, a very similar year-by-year intake scenario is
calculated, as shown in Figure 4. However, when the
incident information is not used, no single intake is
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Figure 3. Calculated year-by-year expectation value of CEDEs.
The shaded bars represent the 90% credible interval (5% to
95%) for those cases where the upper limit exceeds 1 mSv.
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Figure 4. Calculated year-by-year expectation value of CEDEs
when prior information about incident is not used. The shaded
bars represent the 90% credible interval (5% to 95%) for those

cases where the upper limit exceeds 1 mSv.

‘positive’ (but the sum of all intakes in 1980 is
‘positive’).

The prior probability parameter � representing a wor-
ker’s intake probability per unit time for non-incident
situations was assumed to be 0.001 per year in the fore-
going (acute intake situation). If the example data are
analysed assuming a value of � 100 times larger
(chronic intake situation), the results shown in Figures 5
and 6 are obtained. Many more intakes are now poss-
ible, although no individual intake is actually ‘positive’.
That is, it seems likely that many intakes have occurred,
but it is not possible to identify with certainty the times
of these intakes.

The total CEDE from all intakes is well determined
by the data in all of these cases. For example, Figure 7
shows the result assuming the normal small value of �
without using the incident information.

DISCUSSION

The Markov Chain algorithm appears to provide a
definitive solution of the inverse problem of internal
dosimetry, that of calculating the intake scenario given
the bioassay data and an agreed-upon set of biokinetic
models. By a definitive solution is meant an exact sol-
ution of the problem without simplifying assumptions.

The Bayesian method allows the question of interest
(‘what is the dose?’) to be addressed directly and the
uncertainties to be quantified. The quantitative assess-
ment of uncertainty, which is based on calculation of
the probability distribution of intake parameters given

��

��

��

��

�

�

�

�

�

��

���� ���	 ���� ���	

��

�
��
��
��
�
��
��
��
��
�
��
��

��

Figure 5. Urine data (�) and calculated expected value (——) of
urine excretion when prior probability of intake per unit time
100 times larger than normal is assumed (� → 100  �).
Larger � corresponds to a chronic rather than acute intake situ-

ation.
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the data — an inherently Bayesian entity — is not poss-
ible using non-Bayesian methods. Not surprisingly, it is
simply not possible to identify the times of intakes with
certainty in many cases, although other quantities, such
as annual dose or total CEDE are usually relatively well
determined by the data.

The drawback of this method is that it requires a large
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Figure 6. Calculated year-by-year expectation value of CEDEs
when prior probability of intake 100 times larger is assumed.
The shaded bars represent the 90% credible interval (5% to
95%) for those cases where the upper limit exceeds 1 mSv.
Many more intakes are now possible, but the intake dates are

not identified with certainty.
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Figure 7. Calculated cumulative distribution of total CEDE.
Line is all intakes.

amount of computer time. A rule of thumb for conver-
gence is at least 1 million to 10 million chain iterations
per possible intake, which translates to a 1 to 10 hour
run for a case such the example discussed here (about
50 possible intakes) using a 1 GHz Pentium processor.
Population studies involving thousands of cases, such as
those carried out to determine the prior parameter �(11)

are then not practical on a desktop workstation. Future
plans at Los Alamos include the use of massively paral-
lel supercomputers to carry out such studies.

APPENDIX 1

Markov Chain Monte Carlo using the
Metropolis–Hasting Algorithm

Suppose statistical inference about a parameter
(possibly vector valued) � is required. The information
(or lack of information) about the distribution of
� = ��1,�2,. . .,�n� as P(�) (prior distribution) is charac-
terised. Data are collected and represented by the likeli-
hood or P(Y��). In any Bayesian analysis, inference on
the parameters depends on the calculated posterior dis-
tribution

P(��Y) =
P(�)P(Y��)

�� P(�)P(Y��) d�
(14)

In many situations, use of the posterior distribution
given by Equation 14 requires numerical calculation.
Monte Carlo integration evaluates the expectation value
of an arbitrary function f(.) of �, E[f(�)], by drawing
samples ��k, k = 0,. . .,Nk� from the posterior distri-
bution and then approximating

E[f(�)] 
1

Nk
�Nk

k=0

f(�k) (15)

So the population mean of f(�) is estimated by a sample
mean. Markov Chain Monte Carlo method is a powerful
tool in such cases.

The following description of the Metropolis–Hastings
algorithm(13,16) closely follows that given in Reference
12. Using the Metropolis–Hastings algorithm, for each
state k, the next state �k+1 is chosen by first sampling
a candidate point �′ from a proposal distribution
q(.��k). Note that the proposal distribution may depend
on the current point �k. The candidate point �′ is then
accepted with probability �(�k,�′) where

�(�,�′) = min 	1,
P(�′)q(���′)
P(�)q(�′��)
 (16)

If the candidate point is accepted, the next state becomes
�k+1 = �′. If the candidate is rejected, the chain does
not move, i.e. �k+1 = �k.

Thus the Metropolis–Hastings algorithm is
extremely simple:
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(1) Initialise �0 and set k = 0.
(2) Generate an observation �′ from a candidate distri-

bution q(�′��k).
(3) Generate a uniform (0,1) random variable u.
(4) If u � �(�k,�′) set �k+1 = �′, otherwise set

�k+1 = �k.
(5) Increment k, go to step 2

Remarkably, the proposal distribution q(.�.) can have
practically any form and the stationary distribution of
the chain will be P(.�Y)

The Metropolis(13) algorithm considers only sym-
metric proposals, having the form q(���′) = q(�′��) for
all � and �′. A special case of the Metropolis algorithm
is random-walk Metropolis, for which q(�′��) =
q(�� − �′�). Typically q(�′��) is a constant for �′
within some given prescribed neighbourhood of �.

Typical implementation of the algorithm generates an
initial ‘large’ number of iterations (called the burn-in)
until the influence of the initial value of the chain has
subsided. The burn-in samples are discarded, and the
samples generated thereafter are used as samples from
the posterior distribution of �.

APPENDIX 2

Code validation

Several test cases where the correct result is known
were used to validate the computer code (ID1.1).
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Figure 8. Cumulative posterior distribution of CEDE for a
single measurement 4.6 standard deviations above zero.

Single measurement

In the case of a single measurement, we know from
previous work(10) that for a prior probability distribution
describing rare non-incident-related intakes, an intake is
‘positive’ only when the measurement is about 4 or
more standard deviations from zero. Figure 8 shows the
cumulative posterior probability distribution of CEDE
for a measurement of 239Pu urinary excretion of 1.7 ±
0.37 mBq.d−1 (0.046 ± 0.01 pCi.d−1) assuming � =
0.001 y−1. The distribution is slightly positive using
the definition of Equation 13. This agrees with the
result obtained using the unfolding algorithm UF3.5
(described in Reference 9 and downloadable from the
Los Alamos web site(15) as the BayesII software
package). The UF3.5 calculation should be exact in this
case. The ID1.1 and UF3.5 calculations assumed a set
of six ICRP 30 inhalation models (class Y and class W,
0.2, 1, and 5 �m AMAD) and an intake time interval of
1 year preceding the measurement. Using only a single
biokinetic model rather than a set of six produces a sim-
pler looking cumulative posterior distribution, but does
not change the number of standard deviations required
for ‘positive’. Similarly, using a fixed intake date of 6
months preceding the measurement (as is done in the
UF3.5 code) rather than allowing the intake date to be
variable (the ID1.1 code allows both possibilities) does
not change the number of standard deviations required
for ‘positive’.

Calculated data

In this case calculated urine bioassay data for nine
samples in an 8 month period following an intake of
370 Bq (10 nCi) of class Y, 1 �m AMAD 239Pu (this data
is in the file BIOASSAY.TST in the BayesII software
package(15)) is used. There are a number of possibilities

Table A1. Calculation results using simulated test data
corresponding to a single 28.7 mSv CEDE intake.

Run parameters CEDE (mSv)

ID1.1 UF3.5

Incident 21 (1.6, 35)(b) 21 (1.9, 34)
a = 370 Bq(a)

a = 0.37 Bq 10 (1.2, 32) 9.1 (1.4, 31)

27 (5.2, 33) 26 (3.7, 33)	(m)→	(m)
1

10
(c)

Non-incident
18 (1.4, 38.5)

28 (21, 37)	(m)→	(m)
1
10

(a)Median of the log-normal prior — see text.
(b)Expectation value and 5% and 95% credible limits.
(c)	(m) is standard deviation of measurement uncertainty —
see text.
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for running the code, for example: (1) the data can be
treated as resulting from a known incident, in which case
the median of the log-normal prior needs to be specified
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Figure 9. Test data (�) and ID1.1 calculation result (——).
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Figure 9. Test data (�) and ID1.1 calculation result (——).
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