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Abstract: A new analysis method for determining whether a measured bioassay, dosimetry, environmentai
meonitoring, or other result should be called ‘positive” or ‘zero’ is proposed, based on the principies of Bayesian
inference. Bayesian methods permit the incorporation of prior knowledge. If, for example, a facility historically has
a very small number of real positive results, then a new measured result must be a greater number of standard
deviations away from zero in order 1o impty that the new result is actually positive. Prior knowledge can have an
important effect on the interpretation of measurements. Classical decision theory of detection limits does not take

prior knowledge into account.

INTRODUCTION

A situation commonly encountered in the
interpretation of bioassay measurements is
illustrated by the fellowing example. A worker,
Mr Smith, is on a routine bioassay programme. A
bioassay measurement is performed and gives
G.03 £ .01 in some units. Mr Smith sees the
result and is upset. ‘I'm very concerned about
radiation and [ really want 10 know if I’ve gotten
any radicactivity in me.” Usually Mr Smith is
given a simplified review of measurement
statistics and classical decision theory. We tell
him a lot about the bioassay measurement. In most
cases Mr Smith’s question is not answered.

The problem posed by this example was
described in 1962 by John Tukey, ‘Far better an
approximate answer to the right question, which is
often vague, than an exact answer to the wrong
question, which can always be made precise!'?,

Using the principles of Bayesian inference,
there is a method for providing reasonable
answers to the questions posed by Mr Smith. After
applying this method, which is described here, we
would say to Mr Smith ‘given what we know
about your work situation, the probability you
have work-related radioactivity in you is 10%’. A
detection result could be interpreted as ‘positive’
if the probability were greater than some limiting
probability, say 50%. If the probability of work-
related activity were less than the limiting
probability, the measurement result would be
interpreted as ‘zero’. Using this definition of
positive and zero in Smith’s case, we could simply
say ‘your measurement indicated zero’. The
precise meaning of these statements will be given
in what foliows. Results interpreted in this fashion
may be better understood by Mr  Smiths,
managers, the general public, or in short all those
who want bottom-line answers 1o the questions of

real interest.

This simple, intuitive, concept of a ‘positive” or
‘zero’ result would be useful in in vive and in vitro
bioassay, external radiation dosimeitry,
environmental monitoring, and other areas,
particularly for sample populations where the
fraction of true positive results is small and the
number of samples is large. The method is also
useful for interpreting limited or partial
measurements, before there is an adequate amount
of new measured information under classical
decision theory.

Altshuler and Pasternack'” and Currie'” have
discussed classical, non-Bayesian, detection limits
based on statistical tests of Poisson populations
“7_ As will be shown, the Bayesian concept of a
positive detection result cannot be directly related
to these concepts because of fundamental
differences in the concepts, The difference between
Bayesian detection limits and classical detection
limits becomes larger when the population of
interest has a smaller fraction of real positive
results. In that case. a measured result needs 1o be
a greater number of standard deviations away
from zero in order to imply a real positive result.

Bayesian and classical methods differ in both
practical and philosophical aspects. The major
practical distinction is that Bayesian methods
permit the formal incorporation of prior
knowledge, belicf, and information beyond that
conlained in the observed data in the inference
process. This additional information may range
from virtually complete ignorance, through
intermediate  knowledge, or the additional
information may be strongly informative as for the
example discussed in this paper. This additional
information is embodied in the so-called prior
distribution.

Bayesian methods of statistical inference are
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described in several textbooks® 'Y, The past two
decades have witnessed an explosion in the use of
Bayesian methods, particularly in the physical
sciences (see ch. 14 of Ref. 12). An cxcellent short
review of the subject is given by Sivia"'®.

Bayesian analysis has been discussed in the
health physics literature by Little™, who
considered a counling situation where a
background count is subtracted. The measured
resuli can then be negative, whereas the true result
is known with certainty to be non-negative. Using
a prior distribution with zero probability for
negative results changes the estimated result from
that given by classical methods. Strom’
comments on Little’'s paper that it is not
necessarily known that the net counting rate must
be positive. However the true quantity of interest
{e.g. activity, concentration) must be non-
negative. A possible systematic emor of
background subtraction can be included in the
measurement error.

MATHEMATICAL MODEL

The true (but unknown) quantity of concern
will be denoted by y,. This could be the activity of
plutopium in urine, tpor ¢xample. There is always a
natural background, which may be very small
(everyone has at least a few atoms of plutonium in
them, for example). We assume a natural
background level of y, that is very small, Figure 1
shows an example of the probability density of
finding amount y, (in interval dy,), for people in
the general popufatmn without any work-related
exposure potential. The gquantity y, . is a critical
level chosen such that almost no ong in the
general population has Yo > Yoo The measurement
result is denoted by v, wuh measurement error Ay,
In the general case, the measured value y has
some known {(or postulated) relationship to the
true value y, In this paper, we assume that

t.5
1F
=
a
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/ Yoc
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Yo
Figure 1. Background distribution of y,

y=y,+Ay where Ay is a random measurement error
with mean O and standard deviation o(y,). We
1mag1ne a situation where the natural background
is much smaller than the measurement error, 50
that y, <« o(y;=0). The precise value of y, is
unimportant as long as the following conditions
hold true: (1) almost no one in an uncontaminated
population has y, > ¥ and (2) ym«G(yO—O)

The statement ?lce result was positive’ is
defined to mean that the probability of a positive
result is greater than the limiting probability,
which is denoted by 1-y. Mathematically, this
statement becomes

P(y >y l¥) =.[ Ply,ly) dy, > 1~y (D)

Yo
{The symbol P(AIB) denotes the probability of A
given that B is true. We distinguish by context
probability densitics and true probabilities. Thus,
if A is a continuoys variable, P(A) needs to be
multiplied by dA to become the probability that A
is in the range A--dA/2 1o A+dA/2.)

In words, Equation ! reads: The probability that
the true result y, is greater than the critical level
Yoo Eiven measurement Tesult y, which is equal to
the integral over y, from Yoo O o of the
probablhty P(y,ly) dyD that y, 1s in interval dy,
glvcn y, is greater than the limiting probability

1--y. Equivalently, since
Plyp>¥, [y HP(y <y, 1y)=]
Yoo

P(y<yoly) =) P(yyly) dy,<y (2)
0

This definition of ‘the result was positive’
depends on a choice of ¥ In this paper we will
choose ¥ = 0.5. This definition also appears to
depend on the critical level vy, but it does not as
long as the two reguirements discussed above are
satisfied,

It is important to appreciate the difference
between talking about y,, the true (but unknown)
quantity, and y, the measured quantity. We are
really interested in estimating y, The
measurement result y is of interest only because of
its value in estimating y.. By conirast, classical
discussions of detection himnits {e.g. Ref. 3) focus
on y, given some assumptions about y,. But no
matier how precise and intricate such a discussion
is, it will not answer the real question of interest:
Whal is the probability distribution of y, given the
new information contained in the measurements
and information we knew beforehand about the
situation? Only the Bayesian method can address
this question.

Given the true quantity ¥y the measurement
result is assumed to have a Gaussmn distribution,
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SV 3
Vamloty)?  2l0(y)i

for —oocy< with measurement error standard
deviation O(yy). In many cases of interest the
assumption of Gaussian measurement errors is a
good approximation.

Given Equation 3, how do we evaloate
condition 1 or 2? This is where Bayes formula
comes in. Bayes formula (see Appendix 1) states

Py ly) = C(y)P(yly }P(y,) (4)

where C(y) is a normalisation constant (constant
with respect to y,), P(yly,) is given by Equation 3,
and P(y,) is the probatnhty distribution of y, that
we would estimate prior to the measurement (the
prior distribution). The normalisation constant
C(y) is, in fact, the reciprocal of the unconditional
probability distribution P(y) of the measurement,
which is sometimes called the evidence (see
Appendix 1).

What is P(y,)? This depends on our prior
knowledge of relevant events or information. The
information could incinde the type of facility,
quantities of material in use, historical records of
previous bicassay results, and information about
specific incidents in which an individual has been
involved. In what follows a rather simple model
will be used, but this can obviously be made more
complicated and/or accurate.

From the previous history of the facility we
believe that some f{raction € of all workers are
positive (i.e. have amounts of radioactivity in their
bodies above the background level). A procedure
for estimating € is discussed in Appendix 2. The
distribution of the true quantity y, for positive
workers is assumed to be uniform up to a
maximum amount y, . Because the background
is essentially zero on the scale determined by
measurement error, the distribution of y_ for the

‘zero’ class of people is taken as a delta function.
Thus, we assume

P(ylyy) =

£

P(YD) ={l- 8)6()’0) +— (5)

Omax
for 0 <y, < ¥4, (The delta function &(x) is the
limit of ?‘ nctions peaked at x = 0 with unity
mte ral such that in the limit, 8(x) = 0 for x = 0

d ) &(x)dx =1

The prior given by Equation 5 is used as an
exampte only. Those who are serious about vsing
this method should construct priors based on
knowledge and experience of their own situations,
The uniform distribution of positive vy, values is
not likely to be realistic. It is used because (1) it is
simple, and (2) it is conservative, in that it skews
the caiculated probability distribution of y, toward
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larger values, relative to a more realistic peaked
functional form.

The prior given by Equation 5 has two
parameters: y, .. and €. Using this prior, an
analytical solution for P(yly), the probability
distribution of true quantity y, given the results of
one or more measurements, is given in Appendix
3. The formulas in Appendix 3 can readily be
coded up in a simple computer program to
calculate whatever quantities might be of most
interest.

NUMERICAL EXAMPLE

Consider the following numerical example
concerning in vive lung counis evaluated for the
presence of “1Am. We assume Yomax = 1-7 nCi, £ =
0,005 (0.5% of people belong to the ‘positive’
class, and, without additional information, we
expect those people 10 have a uniform distribution
of lung burdens extending from 0 to 1.7nCi), and y
=0.5.

Equation 3 is found to be a good maodel for the
measurement errors for the Los Alamos in vive
counting system. A large subtraction of body
background is involved, which gives the
possibility of negative measured results. The
measurement error standard deviation is found to
be of the form

S(y,) = O N1 + y,fa) (6)

with ¢, = 0.1nCi and a = 0.4nCi. Equation 6 was
obtained from a linear fit of observed variances to
measured results.

The commonly used decision level or critical
level L is the level that gives some specified rate
of false positives™”. For 5% false positives L =
1.6450(y, = O) = 16450, = 0.165nCi. Let us
assume that the measuremenl gave y = L. Even
though L_ is precisely defined, it is tempting to
assume that if the false positive rate is 5%, 95% of
the time a resuit 2 L_ would be actually positive.
This would be incorrect! For our example, after a
measurement giving y = L_, Equation 1 and
Equation A3.5 in Appendix 3 show the probability
that the result is positive is only 0.3%! This
numerical exampie is discussed further in the next
section, and the result can be obtained from Figure
4. If the measurement is repeated and the average
is greater than L, the probability of a positive
result is still only 0.6%. Only after seven
repetitions of the measurement does the average
value being greater than L imply at least a 50%
probability that the result is positive,

For a single measurement to imply a positive
result, it has to be greater than 0.38nCi (see Figure
4). For two measurements, the average must be
greater than 0.28nCi.



G. MILLER, W. C. INKRET, and f1. F. MARTZ

ALTERNATIVE DERIVATION

Let us assume that we have a group of N people
having a distribution of y, given by Equation 5, so
that

T = NPy, %
—— = NP(y
dy, 0

All of these people are measured and a
distribution of results y is calculated. The
probability of measurement result y in interval dy
is given in terms of P(y,,) by the equation

P(y) =I P(yvly,) P(y,) dy, (8)
and ’

aN NP 9

dy - (y) (9

Equation 8 resulis from the fact that the event
{‘measured y'} is the union of the non-
intersecting events {‘true amount y,} AND
{‘measured y given y,’} over all possible values
of y,.

12000,
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Figure 2. Distribution of measured results from clean
people.
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Figure 3. Distribution of measured results from positive
people.

Let us separate dN/dy into two components, (1)
results from people in the ‘zero class’ dNO/dy, and
(2) results from people in the ‘positive class’
dN+/dy. The quantity dNO/dy is calculated using
Equation 9 with P(y0) = (1-e)d(y0) and dN+/dy is
calculated using Equation 9 with P(y0) = e
/yOmax for y0 < yOmax. Figures 2 and 3 show
dNO/dy and dN+/dy for a sample N of 3000
people using the parameters of the numerical
example already discussed. Figure 2 shows the
distribution of measured results from 3000(1-e) =
2985 people that belong to the ‘zero™ class, so it
just reflects the measurement error around zero,
Figure 3 is a plot of the measured results from
3000e = 15 people in the *positive’ class, if the
distribution of y0 takes the form given by
Equation 5. The integrals under the curves in
Figures 2 and 3 are 2985 and 15 respectively,
corresponding to the numbers of people in the
‘zero’ and “positive’ classes.

The distribulion of measured results is a sum of
dNO/dy from Figure 2 and dN+/dy from Figure 3.
For a given measured value y, the fraction of
results that are zero is

_ dN,/dy
®" dNydy +dN_jdy

Equation 10 is exactly the same as the Bayesian
probability P(y, < y, ly) calculated using Equation
2, and Equation A3.5 in Appendix 3. The fraction
of results that are positive is given by

f,=1-1; (11)

which is the same as the Bayesian probability of a
positive result given by Equation 1. Figure 4
shows f, plotted against measured value y (for a
single measurement) for three different values of £
(using the parameters of the numerical example
already discussed).

For very small values of e as in Figures 2 and 3,
dN,/dy is much larger than dN /dy. This means

(10)

f = P{positiva)
o
i
L

o
)
T

06 08 1

%a

Figure 4. Probability of a positive result given measured
result vy,
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that the measured result y, even if fairly large, is
likely 10 be just the tail of the distribulion of
people with zero true amount, Eventually this tail
becomes exponentially small and a large enough
measured y implies a positive resuli. Figure 4
shows how the probability that the result is
positive depends on both g, the parameter giving
the number of 1wue positives in the prior
distribution, and y, the measured result.

DISCUSSION

In a clean facility (or sample population) where
only a small fraction of cases are truly positive,
the measured results must be a larger number of
standard deviations away from zero before the
result can be interpreted as positive. This is an
important result from the Bayesian analysis. The
Bayesian analysis does require us to estimate the
prior distribution; there is no logical way to avoid
doing this. The assumption of a uniform prior
distribution, which is often implicitly made, is a
misleading approximation in many cases. The
Bayesian approach forces wus to state our
assumptions clearly. and provides a method for
quantifying subjective methods for doing the same
thing that are often used in practice.

APPENDIX 1

Bayes Formula
For convenience, a heuristic derivation of
Bayes formula will be given here. The formula for
condition probability is
P(AIB) = P(AB)/XB) (Al.D)

where P(AIB) is the probability of A given B
while P(AB) is the probability of A and B.
Interchanging A and B,

P(BIA) = P(AB)/P(A) {A1.2)
Therefore,
P(BIA) = P(AIBYP(B)/P(A) (Al.3)

which is Bayes formula

APPENDIX 2
Estimating the Prior Distribution

To estimate the prior distribution, we start with
& set of results that logically pertain to the case
in question. The unconditional distribution of
measurernent results from this data set is given, in
terms of P(y ). by

Py = [ Piyly Py, (A2.1)
0

The procedure described in this paper can be
used with other, less crude, methods of estimating
the prior distribution using other information. One
approach is to use empirical Bayes method"'.
Using this approach, a relative frequency-based
prior distribution is determined from the past
measurement results at the facility, similar to what
was done here, but in a more formal way.

In estimating the prior distribution using
historical data as done in this paper, we have
assumed that what has happened in the past is
applicable to the present. This is usually a
conservative assumption for radiation safety, since
the technology and metheds are improving with
time.

There are other alternative Bayesian approaches
to the decision problem considered here. It can be
formulated as a 2 x 2 Bayesian decision analysis
problem in which the two states of nature are
{6,803 = {¥,< Yo.» ¥, > Y, ) that is, {true “Zero,”
true “Positive’}, and the two actions are {a,, a,} =
{conclude ‘Positive,” conclude ‘Zero’} (see Ref,
13, Sec. 5.4). A major difficulty in using this
approach is the necessity of considering and
specifying a 2 x 2 loss function representing the
loss incurred when action a, is taken and the state
of nature is the 6}.

Knowing P(yly,) and P(y), it is theoretically
possible using various techniques to estimate
P(y,) from Equation A2.1. In our 1two parameter
representation, P(y,) is given by Equation 5.

The problem in estimating € occurs because the
portion of the distribution arising from the delta
function term is much larger than the £ term. A
very simple method will be used here. The
quantity y, .. is taken to be the largesi value of y
in the data set. Then, starting with some assumed
¢, we find the value ¥, of y such that a single
measurement implies a positive result. Then we
see how many results N, in the data set have y >
y,- Finally, € is obtained }”rom the formula

{(_}!na x—y 1

yOmax

:N1 = EN (A22)

where N is the total number of results in the data
set. This process is iterated until it converges to a
final value of €.

APPENDIX 3
Analytical Solution for P(y,ly)

After N independent measurements giving
results y,, ¥, - . .¥y
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N 1
POy Y, - - Y =C 111 P(y,lypP(y,) (A3.1) PO Yz I =C G
. .. N
where the normalisation constant C is independent v P A3.4
of y, Substituting Equation 3 for P(yly,) into expl 2{0(y0)]2(y Y IPG) Aa34

Equation A3.1

Using the model of P(y,) gtven in Equation 5, the

P(y Iy, ¥ - - ) = [ ( ool exp{- final result is obtained:
Yo
i< N
P(Y Y, ¥y = €% =g v
Z(y Yo L2 ypgy,) (A3.2) Wl Y30 Al el 2[0(0)]’”
i=1 2[0( 0)] £
Some factors are absorbed into C to make a new 8(yﬂ) + ym[e(yo)]N expi— 2oy )]26’0 Y) }

normalisation constant C'.
The sum in the exponential in Equation A3.2
can be writlen as

where C" is given by

11- N , e .[ oms
2y = NG — 25,3 + 3, A3 o o T AL
=Ny, —¥) '+ NG"-¥9) dy N
Substituting Equation A3.3 into Equation A3.2 we n EXp{- 2 O A3.5
obtain, (o (y,)] 2[o(y,)]
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