next up previous
Next: SPN Source Iteration Strategy Up: Simplified Spherical Harmonics (SPN Previous: SPN Properties

SPN Temporal Discretization

Radiation transport equations:

\bgroup\color{blue}$\displaystyle {\frac{{1}}{{c}}}$\egroup\bgroup\color{blue}$\displaystyle {\frac{{\partial}}{{\partial t}}}$\egroup\bgroup\color{blue}$\displaystyle \xi_{{m,g}}^{}$\egroup + \bgroup\color{blue}$\displaystyle \mbox{$\mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{\nabla}$} \cdot$}$\egroup\bgroup\color{blue}$\displaystyle \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{\Gamma}$}$\egroupm, g + \bgroup\color{blue}$\displaystyle \sigma_{g}^{t}$\egroup\bgroup\color{blue}$\displaystyle \xi_{{m,g}}^{}$\egroup = \bgroup\color{red}$\displaystyle \sigma_{g}^{s}$\egroup\bgroup\color{red}$\displaystyle \phi_{g}^{}$\egroup + \bgroup\color{green}$\displaystyle \sigma_{g}^{e}$\egroupBg + \bgroup\color{magenta}$\displaystyle \mathcal {C}$\egroupsg  ,

\bgroup\color{blue}$\displaystyle {\frac{{1}}{{c}}}$\egroup\bgroup\color{blue}$\displaystyle {\frac{{\partial}}{{\partial t}}}$\egroup\bgroup\color{blue}$\displaystyle \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{\Gamma}$}$\egroupm, g + \bgroup\color{blue}$\displaystyle \mu^{2}_{m}$\egroup\bgroup\color{blue}$\displaystyle \mbox{$\mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{\nabla}$}$}$\egroup\bgroup\color{blue}$\displaystyle \xi_{{m,g}}^{}$\egroup + \bgroup\color{blue}$\displaystyle \sigma_{g}^{t}$\egroup\bgroup\color{blue}$\displaystyle \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{\Gamma}$}$\egroupm, g = \bgroup\color{magenta}$\displaystyle \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{\mathcal{C}}$}$\egroupvm, g

for m = 1, M , and g = 1, G .

Temperature equations:

Cvi\bgroup\color{blue}$\displaystyle {\frac{{\partial T_i}}{{\partial t}}}$\egroup = \bgroup\color{blue}$\displaystyle \alpha$\egroup\bgroup\color{blue}$\displaystyle \left(\vphantom{ T_e-T_i }\right.$\egroupTe - Ti\bgroup\color{blue}$\displaystyle \left.\vphantom{ T_e-T_i }\right)$\egroup + Qi  ,  
Cve\bgroup\color{blue}$\displaystyle {\frac{{\partial T_e}}{{\partial t}}}$\egroup = \bgroup\color{blue}$\displaystyle \alpha$\egroup\bgroup\color{blue}$\displaystyle \left(\vphantom{ T_i-T_e }\right.$\egroupTi - Te\bgroup\color{blue}$\displaystyle \left.\vphantom{ T_i-T_e }\right)$\egroup + Qe + \bgroup\color{green}$\displaystyle \sum_{{g=1}}^{{G}}$\egroup\bgroup\color{green}$\displaystyle \left(\vphantom{ \sigma_g^a \phi^{(0)}_g- \sigma_g^e B_g }\right.$\egroup\bgroup\color{green}$\displaystyle \sigma_{g}^{a}$\egroup\bgroup\color{green}$\displaystyle \phi^{{(0)}}_{g}$\egroup - \bgroup\color{green}$\displaystyle \sigma_{g}^{e}$\egroupBg\bgroup\color{green}$\displaystyle \left.\vphantom{ \sigma_g^a \phi^{(0)}_g- \sigma_g^e B_g }\right)$\egroup  ,  

where
Blue = Implicit or backwards Euler terms,  
Magenta = Explicit or extrapolated implicit terms,  
Red = Implicit terms accelerated by DSA,  
Green = Linearized implicit terms accelerated by LMFG.  

This is not quite accurate -- it's actually more complicated than this -- but this captures the flavor of the temporal discretization.


next up previous
Next: SPN Source Iteration Strategy Up: Simplified Spherical Harmonics (SPN Previous: SPN Properties
Michael L. Hall