
Working Note on Bilinear Predi
tion ofRelatednessWilliam H. PressMar
h 28, 20051 The SetupWe have a set of obje
ts fAg indexed as Ai, with i = 1; : : : ; I , and another setof obje
ts fBg indexed as Bj , with j = 1; : : : ; J . The A's and B's are not thesame kinds of of obje
ts, and, in general, I 6= J .Ea
h Ai has real-valued \features" indexed by m = 1; : : : ;M . So, Aim isthe matrix of the values of these features for all the A's. (Ea
h A has the sameset of features, but not, in general, the same values.)Similarly, ea
h Bj has features indexed by n = 1; : : : ; N . Bin is the matrix ofthe values of these features for all the B's. In general, M 6= N , and there neednot be any parti
ular 
orresponden
e between features of the A's and featuresof the B's.As training data, we are given a \relationship matrix" Wij de�ned byWij = (+1 if Ai is \related" to Bj , or�1 if Ai is \not related" to Bj (1)There are no other 
onstraints on Wij . That is, the \relationship" need have nospe
ial properties (e.g., one-to-one). Note that Wij is not symmetri
; in fa
t,not even generally square.The problem is: Given the feature matri
es Aim and Bjn, \predi
t" whetherAi and Bj are related { that is, predi
t the value of Wij . We want to \learn"how to do this for the Wij provided as training data, and we will then apply itto additional A's and B's not in the training data.2 The Approa
hThe approa
h is pure linear algebra. The basi
 idea look for a linear 
ombinationofA's features (with values denoted Ai�) and a linear 
ombination ofB's features(with values denoted Bj�) the sign of whose produ
t predi
ts Wij in some best-�t sense, Wij � sign(Ai�Bj�) (2)1



More spe
i�
ally, we pro
eed as follows:1. Standardize the features of both fAg and fBg to have zero mean andunit varian
e: bAim � Aim � hAxmixh(Aym � hAxmix)2iy1=2bBjn � Bjn � hBxnixh(Byn � hBxnix)2iy1=2 (3)2. De�ne Ai� and Bj� in terms of unknown 
oeÆ
ients �m and �n byAi� �Xm �m bAim with Xm �2m = 1Bj� �Xn �n bBjn with Xn �2n = 1 (4)3. Solve for optimal �'s and �'s by maximizing the magnitude of the multi-linear (linear in A's, B's, and W 's) �gure-of-merit fun
tionF.M. = hAi�WijBj�iij / Xijmn�m bAimWij bBjn�n � �T bATWbB� (5)subje
t to the normalization 
onstraints on the �'s and �'s. The matrix notationis self-explanatory.3 Method of SolutionUsing Lagrange multipliers to impose the 
onstrants, we want to �nd the ex-trema of �T bATWbB� � 12�A�T�� 12�B�T� (6)Taking derivatives with respe
t to ea
h of the �m's and �n's gives this (non-standard) eigenvalue problem: bATWbB� = �A�bBTWT bA� = �B� (7)I know of two ways to solve this eigenproblem, a good way and a bad way.The bad way (given �rst be
ause it is pedagogi
ally more straightforward) is todivide one of the above equations by its eigenvalue �fA;Bg and then substituteinto the other equation. This gives two un
oupled symmetri
 eigenproblems instandard form, bATWbBbBTWT bA� = (�A�B)�bBTWT bAbATWbB� = (�A�B)� (8)2



The �rst equation will haveM eigenvalues, all non-negative (sin
e the matrix isa \perfe
t square"). The se
ond equation will have N non-negative eigenvalues,identi
al to those of the �rst equation, ex
ept that ifM 6= N , the larger problemwill be padded out with additional zero eigenvalues. (Proof left as exer
ise forreader.)Chosing any eigenvalue � identi
al between the �rst and se
ond problem,its 
orresponding eigenve
tors are solutions for � and � that will satisfy theoriginal problem, equation (7), with�A = �B = p� (9)What is \bad" about this method is that in e�e
tively squaring the originalmatrix we have squared the 
ondition number of the problem, so the solutionis numeri
ally sensitive to roundo� error.The \good" solution, whi
h gives identi
al results but more stably (and withless work) is this:Compute the singular value de
omposition (SVD) of the matrix bATWbB,namely bATWbB = Udiag(w)VT (10)where U and V are 
olumn-orthonormal matri
es. Then for ea
h singular valuewk, the 
orresponding 
olumn ofU is a solution � and the 
orresponding 
olumnof V is the 
orresponding �. The values of �A and �B are both wk, and we alsohave (
f. equation 5), �T bATWbB� = wk (11)Proof of all this left to the reader.4 Dis
ussionWe started out looking for a single pair of linear 
ombinations Ai� and Bj�that extremize the �gure of merit (5). In the end, we have found (generi
ally)min(M;N) su
h pairs, all mutually orthogonal.The merit of ea
h pair is given by the 
orresponding singular value wk,so, in pra
ti
e, we will only be interested in pairs with large singular values{ signi�
antly larger than might o

ur by 
han
e in some randomized 
ontrolrelationship matrix W 0ij , for example.The pairs are orthogonal in the sense that, if Ai� and A0i� are two su
hextremal solutions, hAi�A0i�ii � 0 (12)(meaning exa
tly zero over the sample, and approximately zero over the popu-lation). And similarly for the Bj�'s. This suggests that we may be able to usemore than one solution in a single predi
tion of a Wij . For example, we mightestimate log-odds for ea
h pair of \eigenfeatures" used separately (presumablythese are generally de
reasing as the singular values get small), and then sumall the log-odds. I haven't looked into this yet.3


