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1 The Setup

We have a set of objects {A} indexed as A;, with i = 1,..., I, and another set
of objects {B} indexed as B;, with j = 1,...,.J. The A’s and B’s are not the
same kinds of of objects, and, in general, I # J.

Each A; has real-valued “features” indexed by m = 1,..., M. So, A;p is
the matrix of the values of these features for all the A’s. (Each A has the same
set of features, but not, in general, the same values.)

Similarly, each B; has features indexed by n = 1,..., N. By, is the matrix of
the values of these features for all the B’s. In general, M # N, and there need
not be any particular correspondence between features of the A’s and features
of the B’s.

As training data, we are given a “relationship matrix” W;; defined by

Wi = {-H %f A; ?s “related” to Bj, or (1)
-1 if A; is “not related” to B;

There are no other constraints on W;;. That is, the “relationship” need have no
special properties (e.g., one-to-one). Note that W;; is not symmetric; in fact,
not even generally square.

The problem is: Given the feature matrices A;,, and Bj,, “predict” whether
A; and B; are related — that is, predict the value of W;;. We want to “learn”
how to do this for the W;; provided as training data, and we will then apply it
to additional A’s and B’s not in the training data.

2 The Approach

The approach is pure linear algebra. The basic idea look for a linear combination
of A’s features (with values denoted A;,) and a linear combination of B’s features
(with values denoted Bj,) the sign of whose product predicts W;; in some best-
fit sense,

Wij ~ sign(Ai*Bj*) (2)



More specifically, we proceed as follows:
1. Standardize the features of both {4} and {B} to have zero mean and
unit variance:

Az —fim = Uemds
<(Aym - <Amm>z)2>y / (3)
Ejn = Bjn - <an>x

((Byn — (Ban)o)®), '

2. Define A;, and Bj, in terms of unknown coefficients a,,, and 3, by

Ai* = Zamjim with Zafn =1
m

- (4)
Bj. =Y BuBjn with Y 2 =1
n n

3. Solve for optimal a’s and #’s by maximizing the magnitude of the multi-
linear (linear in A’s, B’s, and W’s) figure-of-merit function

F.M. = <AZ'*WZ']‘B]'*>”. X Z amAimWiijan = aTATWB,B (5)
ijmn
subject to the normalization constraints on the a’s and 8’s. The matrix notation
is self-explanatory.

3 Method of Solution

Using Lagrange multipliers to impose the constrants, we want to find the ex-
trema of N N

a"ATWBS - ixia"a - IxpBT B (6)
Taking derivatives with respect to each of the ay,,’s and f,,’s gives this (non-
standard) eigenvalue problem:

ATWBS = M«

B"W7Aa = \pf3 )

I know of two ways to solve this eigenproblem, a good way and a bad way.
The bad way (given first because it is pedagogically more straightforward) is to
divide one of the above equations by its eigenvalue A;4 p) and then substitute
into the other equation. This gives two uncoupled symmetric eigenproblems in
standard form,

ATWBB " WTAa = (AadB)a

R P 8
BTWTAATWBSA = (Aa)g)S ®



The first equation will have M eigenvalues, all non-negative (since the matrix is
a “perfect square”). The second equation will have N non-negative eigenvalues,
identical to those of the first equation, except that if M # N, the larger problem
will be padded out with additional zero eigenvalues. (Proof left as exercise for
reader.)

Chosing any eigenvalue A identical between the first and second problem,
its corresponding eigenvectors are solutions for a and 3 that will satisfy the
original problem, equation (7), with

A=A = VA 9)

What is “bad” about this method is that in effectively squaring the original
matrix we have squared the condition number of the problem, so the solution
is numerically sensitive to roundoff error.

The “good” solution, which gives identical results but more stably (and with
less work) is this:

Compute the singular value decomposition (SVD) of the matrix ATWB,
namely R R

ATWB = Udiag(w)V7” (10)

where U and V are column-orthonormal matrices. Then for each singular value
wy, the corresponding column of U is a solution a and the corresponding column
of V is the corresponding 8. The values of A4 and Ap are both wy, and we also
have (cf. equation 5),

a"ATWBS = w, (11)

Proof of all this left to the reader.

4 Discussion

We started out looking for a single pair of linear combinations A;, and Bj,
that extremize the figure of merit (5). In the end, we have found (generically)
min(M, N) such pairs, all mutually orthogonal.

The merit of each pair is given by the corresponding singular value wy,
S0, in practice, we will only be interested in pairs with large singular values
— significantly larger than might occur by chance in some randomized control
relationship matrix Wi’j, for example.

The pairs are orthogonal in the sense that, if 4;, and A}, are two such
extremal solutions,

(A ALY, ~ 0 (12)

(meaning exactly zero over the sample, and approximately zero over the popu-
lation). And similarly for the Bj.’s. This suggests that we may be able to use
more than one solution in a single prediction of a W;;. For example, we might
estimate log-odds for each pair of “eigenfeatures” used separately (presumably
these are generally decreasing as the singular values get small), and then sum
all the log-odds. I haven’t looked into this yet.



