The CAESAR Code Package
(LA-UR~00-5568, LA-CC-06-027)

Michael L. Hall

September 2, 2008

ii

The C&SAR Code package was developed by Michael L. Hall. He can be reached at:

Los Alamos National Laboratory
P.O. Box 1663, MS-D413

Los Alamos, NM 87545

Email: Hal1@LANL. gov

The release history of the C&ESAR Code Package is:

Version: 1.1.1 Date: 05/09/06, 10:51:41 (current version)
Version: 1.1 Date: 03/22/06 (LA-CC—-06-027)

Version: 1.0 Date: 02/05/04 (LA-CC-04-009)

Version: 0.6 Date: 10/02/03

Version: 0.5 Date: 11/13/00 (LA-UR-00-5568)

iii
Preface

The C&SAR Code Package is a computational physics development environment. In other words, it provides
an environment where the physics of real systems can be modeled, by discretizing a set of partial differential
equations on a mesh and solving the resultant algebraic system.

The C&ESAR Code Package does not by any means span this extremely large problem space. It does, however,
provide a consistent means of incorporating new methods of attacking the computational physics problem.
It is extensible — new equation sets, new discretizations, new meshes, new linear solvers, new communication
libraries, etc., may be incorporated easily.

The emphasis in CESAR is on equation sets, discretizations, meshes, nonlinear solvers and preconditioners,
which are all incorporated into the basic CAESAR structure. In contrast, linear solvers, communications
libraries, mesh generators and partitioners, and visualization tools are generally included as external packages
developed elsewhere, but may be developed inside C&ESAR eventually.

The C&EsAR Code Package has these coding characteristics:

e It is written in Fortran-90, preprocessed by Gnu m4.

e It is written in an object-based fashion, and probably comes as close to being object-oriented as is
possible in Fortran-90.

e It has both parallel and serial versions, designed in from the start of the project.

e It has a completely levelized design (Lakos, 1996); there are no dependency loops between classes or
modules.

e It uses its own form of Design by Contract™ (Meyer, 1997) to verify the behavior of all procedures.
o It uses extensive unit testing to certify all classes.

e It uses the ideas of literate programming! (Knuth, 1992) to generate documentation (in HTML,
PostScript and PDF) from comments included in the code, via the Document Package?.

The C&SAR Code Package has these computational physics characteristics:

e It allows for multiple mesh types. Currently, a multi-mesh class which can support many types
of meshes is being developed. Among the meshes supported will be: uniform meshes, orthogonal
meshes, structured meshes, unstructured meshes, adaptive mesh refinement (AMR) meshes, triangu-
lar/tetrahedral meshes, and quadrilateral/hexahedral meshes. Polygonal/polyhedral meshes may also
be supported in the future.

o It allows for multiple dimensions — 1-D, 2-D and 3-D.
o It allows for multiple geometries — cartesian, cylindrical and spherical.

e It allows for multiple physics packages by allowing for various sets of partial differential equations.
Future physics to be modeled may include diffusion, radiation transport (photonics), radiation hydro-
dynamics, fluid dynamics, magnetohydrodynamics and heat pipe thermal hydraulics.

e It allows for multiple discretizations of the same terms in the equations.

o It allows for multiple external packages for linear solvers, communications, visualization, etc.

lhttp://www.literateprogramming.com/
2http ://www.lanl.gov/Document

iv

The C&sAR Code Package is related to the earlier Augustus®, Spartan*, and THROHPUT® Code Packages.

The documentation is split into the following major parts:

e CaEsAR Package User’s Manual (Part I, page 3)

e CaEsAR Package Code Manual (Part II, page 17)

e CmsAR Package Methods Discussion (Part ITI, page 185)
e CmEsAR Package Code Listings (Part IV, page 193)

Additional documentation related to the CESAR project is listed in Presentations and Articles (Chapter 1,
page 3).

Shttp://www.lanl.gov/Augustus
4http://www.lanl.gov/Spartan
Shttp://www.lanl.gov/THROHPUT

Short Contents

List of Figures

List of Tables

Part I: Caesar Package User’s Manual
1. Presentations and Articles

2. Installation

3. Standalone Usage

4. Calling the Caesar Package

Part II: Ceaesar Package Code Manual
5. Design Decisions

6. m4 Preprocessing

7. Intrinsics Module

8. Utilities Module

9. Data_Structures Module

10.Mathematics Module

11.Parallel Utilities Module

12.Linear_Algebra Module

13.Equation Module

XXV

xxvii

11

13

15

17

19

35

57

63

115

123

133

157

vi SHORT CONTENTS

14.Mesh Module 167
Part II1 : Caesar Package Methods Discussion 183
15.Mathematics Methods 185
16.Linear Algebra Methods 187
Part IV : Caesar Package Code Listings 191
A. m4 Preprocessing Code Listings 193
B. Intrinsics Module Code Listing 211
C. Utilities Module Code Listing 275
D. Data_Structures Module Code Listing 289
E. Mathematics Module Code Listing 467
F. Parallel_Utilities Module Code Listing 493
G. Linear_Algebra Module Code Listing 527
H. Equation Module Code Listing 621
I. Mesh Module Code Listing 683
Bibliography 753

Index 755

Table of Contents

List of Figures XXV

List of Tables xxvii
Part I: Caesar Package User’s Manual 1
1. Presentations and Articles 3
2. Installation 7
2.1 Requirements L. L e e e 7
2.2 External Packages e 8
2.2.1 MPIPackage e e e e 8

222 PGSLmBPackage e 8

2.2.3 LAPACK Package o o i i i e e e e 8

2.24 LAMG Package i i e e e e e 9

3. Standalone Usage 11
3.1 Graphical User Interface o . e 11

4. Calling the Casar Package 13
Part II: Caesar Package Code Manual 15
5. Design Decisions 17
6. m4 Preprocessing 19
6.1 Global m4 Settings e 19
6.2 Typemd Macros o i i i i i e e e e e e e 20
6.3 Verify m4 Macros o e e e e 21
6.4 Replicate m4 Macros L e e e e 24

vii

viii

7.

TABLE OF CONTENTS

6.5 Superclass m4 Macros oL e e e e e e e 27
6.6 Unit Test m4d Macros i e e 30
6.7 FlagsModule e e 31
6.8 Numbers Module e 32
Intrinsics Module 35
7.1 Status Class o o o o e e e e e e e 35
7.1.1 Initialize Status Procedure 36
7.1.2 Initialize Status_Vector Procedure 36
7.1.3 Finalize Status Procedure 37
7.1.4 Finalize Status_Vector Procedure 37
7.1.5 Valid_State_Status Procedure 37
7.1.6 Valid_State_Status_Vector Procedure 37
7.1.7 Character_Equal Status Procedure 38
7.1.8 Character_ Not_Equal_Status Procedure 38
7.1.9 Consolidate Status Procedureo 39
7.1.10 Error_Status Procedure e 39
7.1.11 Get_Status_Output Procedure e 40
7.1.12 Normal Status Procedure e 40
7.1.13 Set_Status Procedure. L 40
7.1.14 Status_Equal_Character Procedure, 41
7.1.15 Status_Equal_Status Procedureo . 41
7.1.16 Status_Not_Equal_Character Procedure 42
7.1.17 Status_Not_Equal_Status Procedure 42
7.1.18 Warning Status Procedure. o o o 42

7.2 Real Class o i i i i e e e e e e e e e 43
7.2.1 Initialize Real Procedure L 43
7.2.2 Finalize Real Procedure 44
7.2.3 Valid_State_Real Procedure 44
7.2.4 MaxVal Real Scalar Procedure 45
7.2.5 MinVal Real Scalar Procedure, 45
7.2.6 SUM_Real Scalar Procedure 45
7.2.7 VeryClose Real Procedure 46

7.3 Integer Class o i i i it e e e e e e e 46
7.3.1 Initialize Integer Procedure 46

7.3.2 Finalize Integer Procedure L o oo 47

TABLE OF CONTENTS

7.3.3 Valid_State_Integer Procedure o
7.3.4 MaxVal Integer Scalar Procedure
7.3.5 MinVal Integer Scalar Procedure
7.3.6 SUM_Integer_Scalar Procedure,
74 Logical Class o o i e e e e
7.4.1 Initialize Logical Procedure
7.4.2 Finalize Logical Procedure
7.4.3 Valid_State_Logical Procedure oo
744 ALL_Scalar Procedure
7.4.5 ANY Scalar Procedure e e
7.4.6 COUNT Scalar Procedure
7.4.7 InInterval Procedure e
7.4.8 1InSet Procedure e e
7.4.9 NotlnInterval Procedure L L
7.4.10 NotInSet Procedure e
7.5 Character Class e e
7.5.1 Initialize_Character Procedure
7.5.2 Finalize Character Procedure
7.5.3 Valid_State_Character Procedure

8. Utilities Module

8.1 F2003.Utils Module e
8.1.1 Command_Argument Count_F2003 Procedure
8.1.2 Get_Command_Argument F2003 Procedure

8.2 Shell Utils Module e e e e
8.2.1 Basename Shell Utils Procedure
8.2.2 Dirname_Shell Utils Procedure

8.3 Text_Utils Module e e e
8.3.1 Capitalize_Text_Utils Procedure., ..
8.3.2 Lowercase Text_Utils Procedure.
8.3.3 Uppercase_Text_Utils Procedure,

9. Data_Structures Module

0.1 Trace Class v v i i e e e e e e e e e e e e e e e
9.1.1 Imitialize Trace Procedure @ @ o i i e e e e e e e e e
9.1.2 Finalize_Trace Procedure @ @ o i i i i e e

9.1.3 Valid_State_Trace Procedure @ . . . @ @ i i

ix

48
48
48
49
49
49
50
51
51
51
52
52
53
53
54
54
54
55
55

57
57
57
58
58
59
59
60
60
60
61

9.2

9.3

9.4

9.5

TABLE OF CONTENTS

9.1.4 Initialized Trace Procedure 73
Communication Class e e e e e e 73
9.2.1 Initialize Communication Procedure 74
9.2.2 Finalize Communication Procedure o . 74
9.2.3 Valid State_Communication Procedure 75
9.2.4 Abort Procedure 75
9.2.5 Assemble Procedureo 75
9.2.6 Broadcast Procedure L e 76
9.2.7 Distribute Procedure Lo e 76
9.2.8 Gather Procedure e 76
9.2.9 Global Reduction Functions o 7
9.2.10 Output_Communication Procedure 78
9.2.11 Output_Test Procedure it e 78
9.2.12 Parallel Write Procedure o 78
9.2.13 Scatter Procedure L 79
Base Structure Class e e e e 79
9.3.1 Initialize Base_Structure Procedure oo 80
9.3.2 Finalize Base Structure Procedure 81
9.3.3 Valid _State_Base_Structure Procedure 81
9.3.4 Initialized Base_Structure Procedure 81
9.3.5 Generate_Even Distribution Procedure L. 0. 82
9.3.6 Get Value Base_Structure Functions 82
9.3.7 Output_Base_Structure Procedure, 83
DataIndex Class 0 o i i e e e e e e e e 83
9.4.1 Initialize Data_Index Procedure 84
9.4.2 Finalize Data_Index Procedure 85
9.4.3 Valid State_Data_Index Procedure 85
9.4.4 Initialized Data_Index Procedure 86
9.4.5 Generate_Shell Partition Procedure oL L. 86
9.4.6 Get_Values_Data_Index Procedure 87
9.4.7 Initialize Shell Partition Procedure 87
9.4.8 Output_Data_Index Procedure, 88
Assembled Vector Class o i i i i e e e e e e e 88
9.5.1 Initialize Assembled_Vector Procedure 89
9.5.2 Finalize_Assembled_Vector Procedure 90

9.5.3 Valid_State_Assembled_Vector Procedure. 90

TABLE OF CONTENTS xi

9.6

9.7

9.5.4 Initialized_Assembled_Vector Procedure 91
9.5.5 Get_Locus_Assembled Vector Procedure 91
9.5.6 Get_Name_Assembled Vector Procedure 91
9.5.7 Get_Values_Assembled_Vector Procedure 92
9.5.8 Get_Version_Assembled Vector Procedure 92
9.5.9 Output_Assembled Vector Procedure 92
9.5.10 Set_Values_Assembled_Vector Procedure 93
9.5.11 Set_Version_Assembled_Vector Procedure 93
Distributed Vector Class o e 94
9.6.1 Initialize Distributed_Vector Procedure 95
9.6.2 Finalize Distributed_Vector Procedure 95
9.6.3 Valid State_Distributed_Vector Procedure 96
9.6.4 Initialized Distributed_Vector Procedure, 96
9.6.5 Assemble AV from DV Procedure 97
9.6.6 Distribute_.AV_to_ DV Procedure 97
9.6.7 Get_Locus_Distributed_Vector Procedure 97
9.6.8 Get_Name Distributed_Vector Procedure 98
9.6.9 Get_Values_Distributed_Vector Procedure 98
9.6.10 Get_Version Distributed_Vector Procedure 98
9.6.11 Output_Distributed _Vector Procedure, 99
9.6.12 Set_Values_Distributed_Vector Procedure 99
9.6.13 Set_Version Distributed_Vector Procedure 100
Overlapped_Vector Class 0 i it e e e e e e e e e 100
9.7.1 Initialize_Overlapped_Vector Procedure 101
9.7.2 Finalize Overlapped Vector Procedure, 102
9.7.3 Valid_State_Overlapped_Vector Procedure 103
9.7.4 Initialized _Overlapped_Vector Procedure, 103
9.7.5 Collect_and_Combine DV _from OV Procedure 103
9.7.6 Gather OV_from DV Procedure 104
9.7.7 Get_Locus_Overlapped_Vector Procedure. 104
9.7.8 Get_Name_Overlapped_Vector Procedure. 105
9.7.9 Get_Values_Overlapped_Vector Procedure 105
9.7.10 Get_Version_Overlapped_Vector Procedure 105
9.7.11 Output_Overlapped_Vector Procedure 106
9.7.12 Set_Version_Overlapped_Vector Procedure 106

9.8 Collected Array Class o 0 i i i i e e e e e e e 107

xii TABLE OF CONTENTS
9.8.1 Initialize Collected_Array Procedure, 108
9.8.2 Finalize_Collected_Array Procedure 109
9.8.3 Valid_State_Collected_Array Procedure 109
9.8.4 Initialized Collected_Array Procedure 110
9.8.5 Collect_CA from OV Procedure 110
9.8.6 Combine DV _from CA Procedure 110
9.8.7 Gather_.and_Collect_CA from DV Procedure 111
9.8.8 Get_Locus_Collected_Array Procedure 111
9.8.9 Get_Name_Collected_Array Procedureo .o... 112
9.8.10 Get_Values_Collected_Array Procedure, 112
9.8.11 Get_Version_Collected_Array Procedure 112
9.8.12 Output_Collected_Array Procedure 113
9.8.13 Set_Values_Collected_Array Procedure 113
9.8.14 Set_Version Collected_Array Procedure. 114

10.Mathematics Module 115

10.1 Math_Utils Module o . e e 115
10.1.1 Prime Factors_Math_Utils Procedure 115

10.2 Statistics Class o o e e e e e e e e 116
10.2.1 Initialize Statistics Procedure L o 117
10.2.2 Finalize Statistics Procedure L o oo 118
10.2.3 Valid_State_Statistics Procedure 118
10.2.4 Initialized Statistics Procedureo oL 119
10.2.5 Add_Value_Statistics Procedure 119
10.2.6 Get Value Statistics Functions oL 119
10.2.7 Output_Statistics Procedure e 120
10.2.8 Update_Global Statistics Procedure 121
11.Parallel Utilities Module 123
11.1 Timer Class . . - - v v v v e 123
11.1.1 Initialize Timer Procedure. L e 124
11.1.2 Finalize Timer Procedure 125
11.1.3 Valid_State_Timer Procedure 125
11.1.4 Initialized Timer Procedure 125
11.1.5 Get Value Timer Functions it 126
11.1.6 Get_CPU_Time Procedure 127
11.1.7 Get_Wall Clock_Time Procedure 127

TABLE OF CONTENTS xiii

11.1.8 Julian Day Procedure L e e e 128
11.1.9 Output_Timer Procedure e 130
11.1.10Reset_Timer Procedure e 130
11.1.11Start_Timer Procedure e 131
11.1.12Stop-Timer Procedure L e e 131
12.Linear_Algebra Module 133
12.1 Mathematic_Vector Class o o i i i it e e e e e e 133
12.1.1 Initialize Mathematic_Vector Procedure 135
12.1.2 Duplicate Mathematic_Vector Procedure 136
12.1.3 Finalize Mathematic_Vector Procedure 136
12.1.4 Valid_State_Mathematic_Vector Procedure 137
12.1.5 Initialized Mathematic_Vector Procedure 137
12.1.6 Add_Values_Mathematic_Vector Procedure. 137
12.1.7 DotProduct_-Mathematic_Vector Procedure 138
12.1.8 Get Value Mathematic_Vector Functions 138
12.1.9 Get_Values_Mathematic_Vector Procedure 139
12.1.10 Orthogonal Mathematic_Vector Procedure 140
12.1.11 Output_Mathematic_Vector Procedure 140
12.1.12Set_Not_Up_to_Date_Mathematic_Vector Procedure 140
12.1.13Set_Values_Mathematic_Vector Procedure 141
12.1.14 Update_DV_Mathematic_Vector Procedure. 141
12.2 ELL Matrix Class ¢ o o i i it e 141
12.2.1 Initialize ELL_Matrix Procedure 144
12.2.2 Finalize ELL_Matrix Procedure 144
12.2.3 Valid_State_.ELL_Matrix Procedure 145
12.2.4 Initialized ELL Matrix Procedure 145
12.2.5 Add_Values_.ELL Matrix Procedure 145
12.2.6 Get Value ELL Matrix Functions 146
12.2.7 Get_Columns ELL_Matrix Procedure 147
12.2.8 Get_Values_ELL_Matrix Procedure 147
12.2.9 MatVec_.ELL_Matrix Procedure 148
12.2.1000utput_ELL Matrix Procedure o 148
12.2.11 Read_Harwell Boeing ELL_Matrix Procedure 149
12.2.12Residual ELL_Matrix Procedure 149

12.2.13Set_Not_Up_to_Date_ELL_Matrix Procedure 150

xiv TABLE OF CONTENTS

12.2.14Set_Values_ ELL_Matrix Procedure 150

12.3 Solver Class i e e e e e e e e e e e 151
12.3.1 Initialize Solver Procedure L e 152
12.3.2 Finalize Solver Procedure e 152
12.3.3 Valid_State_Solver Procedure 153
12.3.4 Initialized Solver Procedure L L 153
12.3.5 Set_Solver_Variable Procedure. 153
12.3.6 Convert ELL to.LAMG Procedure 154
12.3.7 Solve Procedure e 155
13.Equation Module 157
13.1 Monomial Class i e e e e e e e e 157
13.1.1 Initialize Monomial Procedure 158
13.1.2 Finalize Monomial Procedure o L. 158
13.1.3 Valid_State_Monomial Procedure 159
13.1.4 Initialized Monomial Procedureo oL 159
13.1.5 Add_to_Matrix Equation_ Monomial Procedure 160
13.1.6 Get Value Monomial Functions 160
13.1.7 Output_Monomial Procedure, 161

13.2 Ortho Diffusion Class e 161
13.2.1 Initialize Ortho_Diffusion Procedure 162
13.2.2 Finalize Ortho_Diffusion Procedure 163
13.2.3 Valid_State_Ortho_Diffusion Procedure 163
13.2.4 Initialized Ortho_Diffusion Procedure 163
13.2.5 Add_to_Matrix_Equation_Ortho_Diffusion Procedure 164
13.2.6 Evaluate_Gradient_Cells_Ortho_Diffusion Procedure. 164
13.2.7 Get_Harmonic Diffusion_Coef_Ortho_Diffusion Procedure. 165
13.2.8 Get Value Ortho Diffusion Functions 165
13.2.9 Output_Ortho_Diffusion Procedure 166
14.Mesh Module 167
14.1 Multi Mesh Class o e e e 167
14.1.1 Initialize Base_Multi_Mesh Procedure 170
14.1.2 Initialize_Uniform_Multi Mesh Procedure 171
14.1.3 Initialize Orthogonal Multi Mesh Procedure 172
14.1.4 Finalize Multi Mesh Procedure 172

14.1.5 Valid_State_Multi_Mesh Procedure 173

TABLE OF CONTENTS

14.1.6 Initialized_Multi_Mesh Procedure .

14.1.7 Dump_CGNS_Multi_Mesh Procedure
14.1.8 Dump_GMV _Multi_ Mesh Procedure
14.1.9 Dump_GMYV DV and MV Vector Procedures

14.1.10 Get_Area_Faces_of_Cells_Multi_Mesh Procedure

14.1.11 Get_Coordinates_Cells_Multi_Mesh Procedure

14.1.12 Get_Coordinates_Cells_of_Cells_Multi Mesh Procedure
14.1.13 Get_Coordinates Faces_of_Cells_ Multi_Mesh Procedure
14.1.14 Get_Coordinates Nodes_of_Cells Multi_ Mesh Procedure
14.1.15Get_DeltaR21_Cells_of_Cells_Multi_Mesh Procedure
14.1.16 Get_DeltaR1f_Cells_of _Cells Multi_ Mesh Procedure
14.1.17 Get_DeltaR2f_Cells_of_Cells_Multi_Mesh Procedure

14.1.18 Get_Flag_Faces_of_Cells_Multi_Mesh
14.1.19 Get Value Multi_Mesh Functions .
14.1.20 Get_Version_Multi_Mesh Procedure

14.1.21 Get_Volume_Cells_Multi_Mesh Procedure
14.1.22 Set_Coordinates_Multi_Mesh Procedure

14.1.23 Set_Version_Multi_Mesh Procedure

Part I1I :

15.Mathematics Methods
15.1 Math_Utils Methods

15.1.1 Prime_Factors Procedure

15.2 Statistics Methods

16.Linear Algebra Methods
16.1 Mathematic_Vector Methods
16.2 ELL_Matrix Methods
16.3 Solver Methods

Part IV :

A. m4 Preprocessing Code Listings
A.1 Settings m4 Macros

A.2 Type m4 Macros
A.3 Verify m4 Macros

Procedure

Casar Package Methods Discussion

Caesar Package Code Listings

XV

173
174
174
174
175
175
176
176
176
177
177
178
178
178
179
180
180
180

183

185
185
185
186

187
187
188
189

191

xvi TABLE OF CONTENTS
A4 Replicate m4 Macros oL e e e e 199
A5 Superclass m4 Macrosol e e e e e e e e 202
A6 Unit Test M4 MacCros -« v v v v i e i e e et e e e e e e e e e e e e 207
A.7 Flags Module Code Listing o e 208

A.7.1 Flags Class Unit Test Program 208
A.8 Numbers Module Code Listing 209
A.8.1 Numbers Class Unit Test Program 210

B. Intrinsics Module Code Listing 211

B.1 Status Class Code Listing o e 211
B.1.1 Imitialize Status Procedure 215
B.1.2 Initialize Status_Vector Procedure 215
B.1.3 Finalize Status Procedure o 216
B.1.4 Finalize Status_Vector Procedure 217
B.1.5 Valid_State_Status Procedure L L 217
B.1.6 Valid _State_Status_Vector Procedure oL L. 218
B.1.7 Character Equal Status Procedure 219
B.1.8 Character Not_Equal_Status Procedure 219
B.1.9 Consolidate Status Procedure 220
B.1.10 Error_Status Procedure 223
B.1.11 Get_Status_Output Procedure L 224
B.1.12 Normal Status Procedure 224
B.1.13 Set_Status Procedure. L 225
B.1.14 Status_Equal Character Procedure, 226
B.1.15 Status_Equal Status Procedure L 226
B.1.16 Status_Not_Equal_Character Procedure 227
B.1.17 Status_Not_Equal Status Procedure, 228
B.1.18 Warning Status Procedure Lo 228
B.1.19 Status Class Unit Test Program 229

B.2 Real Class Code Listing o et e e 231
B.2.1 Initialize Real Procedure 232
B.2.2 Finalize Real Procedureo 234
B.2.3 Valid State_Real Procedure 236
B.2.4 MaxVal Real Scalar Procedure 240
B.2.5 MinVal Real Scalar Procedure 240

B.2.6 SUM_Real Scalar Procedure e 241

TABLE OF CONTENTS xvii

B.2.7 VeryClose Real Procedure 241
B.2.8 Real Class Unit Test Program 242

B.3 Integer Class Code Listing o o i i e 244
B.3.1 Initialize Integer Procedure o 245
B.3.2 Finalize Integer Procedure o 247
B.3.3 Valid State_Integer Procedure o 249
B.3.4 MaxVal Integer Scalar Procedure o L 250
B.3.5 MinVal Integer_Scalar Procedure 251
B.3.6 SUM._Integer Scalar Procedure 251
B.3.7 Integer Class Unit Test Program 252

B.4 Logical Class Code Listing i ittt 254
B.4.1 Imitialize Logical Procedure 256
B.4.2 Finalize Logical Procedure 258
B.4.3 Valid State_Logical Procedure o 259
B.4.4 ALL Scalar Procedure e 260
B.4.5 ANY _ Scalar Procedure. L 261
B.4.6 COUNT Scalar Procedure i i it e e e et 261
B.4.7 Inlnterval Procedure 262
B.4.8 InSet Procedure e 263
B.4.9 NotlnInterval Procedure e 264
B.4.10 NotInSet Procedure 265
B.4.11 Logical Class Unit Test Program, 266

B.5 Character Class Code Listing 267
B.5.1 Initialize_ Character Procedure, 268
B.5.2 Finalize Character Procedure 270
B.5.3 Valid _State_Character Procedure 272
B.5.4 Character Class Unit Test Program 273

C. Utilities Module Code Listing 275
C.1 F2003_Utils Module Code Listing oo i ittt ittt 275
C.1.1 Command_Argument_Count_F2003 Procedure 276
C.1.2 Get.Command_Argument_F2003 Procedure 277
C.1.3 F2003_Utils Module Unit Test Program 278

C.2 Shell Utils Module Code Listing i ittt 278
C.2.1 Basename_Shell Utils Procedure 279

C.2.2 Dirname_Shell Utils Procedure e 281

xviii TABLE OF CONTENTS
C.2.3 Shell Utils Module Unit Test Program 281

C.3 Text_Utils Module Code Listingo i ittt 283
C.3.1 Capitalize_Text_Utils Procedure. 284
C.3.2 Lowercase Text_Utils Procedure 285
C.3.3 Uppercase_Text_Utils Procedureo 286
C.3.4 Text_Utils Module Unit Test Program 287

D. Data_Structures Module Code Listing 289
D.1 Trace Class Code Listing e 290
D.1.1 Initialize Trace Procedure e 291
D.1.2 Finalize Trace Procedure 293
D.1.3 Valid_State_Trace Procedure 295
D.1.4 Initialized-Trace Procedure 296

D.2 Communication Class Code Listing 296
D.2.1 Initialize Communication Procedure, 300
D.2.2 Finalize Communication Procedure oL L. 301
D.2.3 Valid State_Communication Procedure 303
D.2.4 Abort Procedure e e e 304
D.2.5 Assemble Procedure L e 304
D.2.6 Broadcast Procedure e 305
D.2.7 Distribute Procedure Lo 306
D.2.8 Gather Procedure e 308
D.2.9 Global Reduction Functions o 311
D.2.10 Output_Communication Procedure 313
D.2.11 Output_Test Procedure e 314
D.2.12 Parallel Write Procedure o 315
D.2.13 Scatter Procedure e 318
D.2.14 Communication Class Unit Test Program 321

D.3 Base Structure Class Code Listing 322
D.3.1 Initialize Base Structure Procedure oL L. 325
D.3.2 Finalize Base Structure Procedure 326
D.3.3 Valid _State_Base_Structure Procedure 327
D.3.4 Initialized Base Structure Procedure L L. 328
D.3.5 Generate_Even_Distribution Procedure 329
D.3.6 Get Value Base_Structure Functions 330

D.3.7 Output_Base_Structure Procedure 332

TABLE OF CONTENTS xix

D.4

D.5

D.6

D.3.8 Base_Structure Class Unit Test Program 334
Data_Index Class Code Listing o e 335
D.4.1 Initialize Data_Index Procedure 338
D.4.2 Finalize Data_Index Procedure 343
D.4.3 Valid State_Data Index Procedure 344
D.4.4 Initialized Data_Index Procedure, 346
D.4.5 Generate_Shell Partition Procedure 346
D.4.6 Get_Values_Data_Index Procedure 348
D.4.7 Initialize Shell Partition Procedure L. 350
D.4.8 Output_DataIndex Procedure 352
D.4.9 Data_Index Class Unit Test Program 356
Assembled _Vector Class Code Listing o 357
D.5.1 Initialize Assembled_Vector Procedure 361
D.5.2 Finalize_Assembled_Vector Procedure 363
D.5.3 Valid State_Assembled_Vector Procedure. 364
D.5.4 Initialized Assembled_Vector Procedure 365
D.5.5 Get_Locus_Assembled Vector Procedure 366
D.5.6 Get_Name_Assembled Vector Procedure 367
D.5.7 Get_Values_Assembled Vector Procedure 367
D.5.8 Get_Version_Assembled_Vector Procedure, 368
D.5.9 Output_Assembled Vector Procedure 369
D.5.10 Set_Values_Assembled_Vector Procedure 371
D.5.11 Set_Version_Assembled _Vector Procedure 372
D.5.12 Assembled Vector Class Unit Test Program 373
Distributed_Vector Class Code Listing 374
D.6.1 Initialize Distributed_Vector Procedure 378
D.6.2 Finalize Distributed_Vector Procedure 381
D.6.3 Valid State_Distributed_Vector Procedure, 382
D.6.4 Initialized Distributed_Vector Procedure, 384
D.6.5 Assemble AV from DV Procedure 384
D.6.6 Distribute. AV_to_ DV Procedure 386
D.6.7 Get_Locus_Distributed_Vector Procedure 387
D.6.8 Get_Name Distributed_Vector Procedure 388
D.6.9 Get_Values_Distributed_Vector Procedure 388
D.6.10 Get_Version_Distributed_Vector Procedure 389

D.6.11 Output_Distributed_Vector Procedure 390

XX TABLE OF CONTENTS
D.6.12 Set_Values Distributed_Vector Procedure 394
D.6.13 Set_Version Distributed_Vector Procedure 395
D.6.14 Distributed_Vector Class Unit Test Program 396

D.7 Overlapped_Vector Class Code Listing 398
D.7.1 Initialize Overlapped_Vector Procedure 402
D.7.2 Finalize Overlapped Vector Procedure, 406
D.7.3 Valid_State_Overlapped_Vector Procedure 408
D.7.4 Initialized_Overlapped_Vector Procedure 409
D.7.5 Collect_and_Combine DV _from OV Procedure 410
D.7.6 Gather OV Afrom DV Procedure 415
D.7.7 Get_Locus_Overlapped_Vector Procedure. 417
D.7.8 Get_Name Overlapped Vector Procedure. 417
D.7.9 Get_Values_Overlapped_Vector Procedure 418
D.7.10 Get_Version_Overlapped_Vector Procedure 423
D.7.11 Output_Overlapped_Vector Procedure 424
D.7.12 Set_Version_Overlapped_Vector Procedure 428
D.7.13 Overlapped_Vector Class Unit Test Program 428

D.8 Collected_Array Class Code Listing 432
D.8.1 Inmitialize Collected_Array Procedure 437
D.8.2 Finalize Collected Array Procedure 442
D.8.3 Valid_State_Collected_Array Procedure 443
D.8.4 Inmitialized Collected_Array Procedure 445
D.8.5 Collect_CA _from OV Procedure i 446
D.8.6 Combine DV_from CA Procedure 447
D.8.7 Gather_and_Collect_CA _from DV Procedure 449
D.8.8 Get_Locus_Collected_Array Procedure 451
D.8.9 Get_Name Collected Array Procedure 452
D.8.10 Get_Values_Collected_Array Procedure 453
D.8.11 Get_Version_Collected_Array Procedure 454
D.8.12 Output_Collected_Array Procedure 454
D.8.13 Set_Values_Collected_Array Procedure 459
D.8.14 Set_Version _Collected_Array Procedure 460
D.8.15 Collected_Array Class Unit Test Program 461

E. Mathematics Module Code Listing 467

E.1 Math_Utils Module Code Listing 467

TABLE OF CONTENTS

E.1.1
E.1.2

Prime Factors_Math_Utils Procedure
Math_Utils Module Unit Test Program

E.2 Statistics Class Code Listing o o i i e

E.2.1
E.2.2
E.2.3
E.2.4
E.2.5
E.2.6
E.2.7
E.2.8
E.2.9

Initialize Statistics Procedure L Lo o
Finalize Statistics Procedure
Valid_State_Statistics Procedure Lo .
Initialized Statistics Procedure L .
Add_Value_ Statistics Procedure Lo L
Get Value Statistics Functions L L oo
Output_Statistics Procedure L
Update_Global Statistics Procedure

Statistics Class Unit Test Program

F. Parallel Utilities Module Code Listing
F.1 Timer Class Code Listing o e e

F.1.1
F.1.2
F.1.3
F.14
F.1.5
F.1.6
F.1.7
F.1.8
F.1.9

Initialize Timer Procedure L o
Finalize Timer Procedure
Valid State_Timer Procedure
Initialized Timer Procedure Lo
Get Value Timer Functions
Get_CPU_Time Procedure e
Get_Wall_Clock_Time Procedure
Julian Day Procedure e

Output_Timer Procedure

F.1.10 Reset_Timer Procedure @ @ i i i i e e e e e e e

F.1.11 Start_Timer Procedure e e e

F.1.12 Stop_Timer Procedure e

F.1.13 Timer Class Unit Test Program

G. Linear_Algebra Module Code Listing
G.1 Mathematic_Vector Class Code Listing

G.1.1
G.1.2
G.1.3
G.1.4
G.1.5
G.1.6

Initialize Mathematic_Vector Procedure
Duplicate_ Mathematic_Vector Procedure
Finalize Mathematic_Vector Procedure,
Valid_State_Mathematic_Vector Procedure
Initialized Mathematic_Vector Procedure

Add_Values_Mathematic_Vector Procedure.

xxi

468
471
472
474
477
478
481
481
483
485
488
489

493
493
496
498
499
500
501
503
504
505
508
513
513
514
515

xxii

G.2

G.3

TABLE OF CONTENTS

G.1.7 DotProduct_Mathematic_Vector Procedure 543
G.1.8 Get Value Mathematic_Vector Functions 544
G.1.9 Get_Values_Mathematic_Vector Procedure 548
G.1.10 Orthogonal Mathematic_Vector Procedure 548
G.1.11 Output_Mathematic_Vector Procedure 549
G.1.12 Set_Not_Up_to_Date_Mathematic_Vector Procedure 552
G.1.13 Set_Values_Mathematic_Vector Procedure 553
G.1.14 Update_DV_Mathematic_Vector Procedure. 556
G.1.15 Mathematic_Vector Class Unit Test Program 557
ELL Matrix Class Code Listing e 560
G.2.1 Initialize ELL_Matrix Procedure 564
G.2.2 Finalize ELL_Matrix Procedure 566
G.2.3 Valid State. ELL_Matrix Procedure 568
G.2.4 Initialized ELL_Matrix Procedure 570
G.2.5 Add_Values ELL_Matrix Procedure 571
G.2.6 Get Value ELL_Matrix Functions 574
G.2.7 Get_Columns ELL Matrix Procedure 578
G.2.8 Get_Values_ ELL_Matrix Procedure 579
G.2.9 MatVec ELL Matrix Procedure i 579
G.2.10 Output_ELL_Matrix Procedure 582
G.2.11 Read_Harwell Boeing ELL _Matrix Procedure 586
G.2.12 Residual ELL Matrix Procedure 593
G.2.13 Set_Not_Up_to_Date_ELL_Matrix Procedure 594
G.2.14 Set_Values ELL Matrix Procedure 594
G.2.15 ELL_Matrix Class Unit Test Program 599
Solver Class Code Listing o o o e e 605
G.3.1 Imitialize Solver Procedure 607
G.3.2 Finalize Solver Procedure 608
G.3.3 Valid State_Solver Procedure 610
G.3.4 Initialized Solver Procedure e 611
G.3.5 Set_Solver_Variable Procedure o 611
G.3.6 Convert_ ELL to . LAMG Procedure 612
G.3.7 Solve Procedure e e e 615

G.3.8 Solver Class Unit Test Program 618

TABLE OF CONTENTS

H. Equation Module Code Listing
H.1 Monomial Class Code Listing e

H.2

H.1.1
H.1.2
H.1.3
H.14
H.1.5
H.1.6
H.1.7
H.1.8

Initialize Monomial Procedure L L o L.
Finalize Monomial Procedure L o o .
Valid_State_Monomial Procedureo,
Initialized Monomial Procedure Lo
Add_to_Matrix_Equation_Monomial Procedure
Get Value Monomial Functions L. oL L
Output_Monomial Procedure

Monomial Class Unit Test Program

Ortho Diffusion Class Code Listing

H.2.1
H.2.2
H.2.3
H.24

Initialize_ Ortho_Diffusion Procedure
Finalize_Ortho_Diffusion Procedure
Valid_State_Ortho_Diffusion Procedure

Initialized_Ortho_Diffusion Procedure

H.2.5 Add_to_Matrix_Equation_Ortho_Diffusion Procedure . .
H.2.6 Evaluate_Gradient_Cells_Ortho_Diffusion Procedure. . .
H.2.7 Get_Harmonic_Diffusion_Coef_Ortho_Diffusion Procedure

H.2.8
H.2.9

Get Value Ortho_Diffusion Functions
Output_Ortho_Diffusion Procedure

H.2.10 Ortho_Diffusion Class Unit Test Program

I. Mesh Module Code Listing
Multi Mesh Class Code Listing ittt

11

I1.1.1 Initialize Base_Multi Mesh Procedure
I1.1.2 Initialize Uniform Multi Mesh Procedure
1.1.3 Initialize Orthogonal Multi Mesh Procedure
I1.1.4 Finalize Multi Mesh Procedure
I1.1.5 Valid_State_Multi_ Mesh Procedure
1.1.6 Initialized Multi Mesh Procedure
1.1.7 Dump_CGNS_Multi Mesh Procedure
1.1.8 Dump_GMV_Multi Mesh Procedure
1.1.9 Dump GMV DV and MV Vector Procedures
I1.1.10 Get_Area_Faces_of Cells_ Multi_Mesh Procedure
I1.1.11 Get_Coordinates_Cells_ Multi Mesh Procedure
I1.1.12 Get_Coordinates_Cells_of_Cells Multi Mesh Procedure

xxiii

621
621
623
625
626
627
628
630
631
633
635
638
640
642
643
643
648
652
654
655
658

XXiv

1.1.13
I.1.14
I.1.15
1.1.16
I.1.17
1.1.18
1.1.19
1.1.20
I.1.21
1.1.22
1.1.23
1.1.24

Bibliography

Index

Get_Coordinates_Faces_of_Cells_Multi_Mesh Procedure
Get_Coordinates_Nodes_of _Cells_Multi_Mesh Procedure

Get_DeltaR21_Cells_of_Cells_Multi_Mesh Procedure
Get_DeltaR1f_Cells_of_Cells Multi_Mesh Procedure
Get_DeltaR2f_Cells_of_Cells Multi_Mesh Procedure
Get_Flag_Faces_of_Cells_Multi_Mesh Procedure
Get Value Multi Mesh Functions
Get_Version Multi_Mesh Procedure
Get_Volume_Cells_Multi Mesh Procedure
Set_Coordinates_Multi_Mesh Procedure
Set_Version_Multi_Mesh Procedure
Multi_ Mesh Class Unit Test Program

TABLE OF CONTENTS

List of Figures

9.1
9.2
9.3
9.4
9.5
9.6

Schematic Diagram of the Assembled Vector data structure 64
Schematic Diagram of the Distributed Vector data structure 65
Schematic Diagram of the Overlapped Vector data structure 66
Schematic Diagram of the Collected Array data structure 67
CESAR Data Structure Hierarchy 70
CESAR Data Structure Implemented Operations 71

XXV

xxvi LIST OF FIGURES

List of Tables

9.1 Relative Data Structure Memory and CPU Requirements 68

11.18Chronological Julian Day numbers for some representative dates. 129

xxvii

xxviii LIST OF TABLES

Part 1

Caesar Package User’s Manual

Chapter 1

Presentations and Articles

The papers and presentations in this chapter are available online via the HTML-based version of this docu-
ment.

Currently, the best general overview papers and presentations concerning the CESAR Project are:

Caesar:

The Caesar Code: Software Design Issues A presentation by Michael
L. Hall that was made to the X-Division External Review Committee on March 10th, 1999 is
available in HTML, PDF and PostScript formats (LA-UR-99-1069). There is also a manager’s
version of this presentation in PDF and PostScript (LA-UR-99-1070).

Spartan:

Spartan/Augustus Overview: Simplified Spherical Harmonics A presentation by Michael
and Diffusion for Unstructured Hexahedral Lagrangian Meshes

L. Hall that was made to the Shavano working group on April 22nd, 1998 is available in HTML,
PDF and PostScript formats (LA-UR-98-3766).

Augustus:

Diffusion Discretization Schemes in Augustus: A New Hexahe- A presentation by Michael
dral Symmetric Support Operator Method
L. Hall and Jim E. Morel which was given three times — to the ASCI PI meeting on July 14th,
1998 at Los Alamos National Laboratory; at an X-Division Work In Progress talk on July 29th,
1998; and at the Nuclear Explosives Code Development Conference in Las Vegas, NV on October
29th, 1998 — is available in HTML, PDF and PostScript formats (LA-UR-98-3146).

A Local Support-Operators Diffusion Discretization Scheme for A paper by J. E. Morel, Michael
Hexahedral Meshes
L. Hall, and Mikhail J. Shashkov which has been submitted to the Journal of Computational
Physics, Summer 1999 — is available in HTML, PDF and PostScript formats (LA-UR-99-4358).

A Second-Order Cell-Centered Diffusion Difference Scheme for A presentation by Michael
Unstructured Hexahedral Lagrangian Meshes
L. Hall and Jim E. Morel which was given twice — at the International Congress On Compu-
tational And Applied Mathematics in Leuven, Belgium on July 26th, 1996; and at the Nuclear
Explosives Code Developers Conference in San Diego, CA on October 24th, 1996 — is available
in PostScript and PDF formats (LA-CP-97-7). It was presented with a video.

3

4 CHAPTER 1. PRESENTATIONS AND ARTICLES

A Second-Order Cell-Centered Diffusion Difference Scheme for A paper by Michael L. Hall
Unstructured Hexahedral Lagrangian Meshes

and Jim E. Morel in the Proceedings of the 1996 Nuclear Explosives Code Developers Conference
(NECDC), UCRL-MI-124790 is available in HTML, PDF and PostScript formats (LA-CP-97-8).

A complete listing of presentations and papers that are related to the C&SAR Project follows:

Caesar:

Progress Towards Higher-Fidelity Yet Efficient Modeling of Ra- A poster presentation by Michael

diation Energy Transport Through Three-Dimensional Clouds

L. Hall and Anthony B. Davis that was made at the Atmospheric Radiation Measurement (ARM)
Science Team Meeting in Daytona Beach, FL. on March 14th—18th, 2005 is available in HTML,
PDF and PostScript formats (LA-UR-05-2275).

Three-Dimensional Radiative Transfer, Simplified ...with Cloud A presentation by Anthony
Modeling and Remote Sensing in Mind

B. Davis, Michael L. Hall and Igor N. Polonsky that was made at the Atmospheric Radiation
Measurement (ARM) Science Team Meeting in Daytona Beach, FL on March 14th—18th, 2005 is
available in PDF format (LA-UR-05-2282).

The Casar Code: Software Design Issues A presentation by Michael
L. Hall that was made to the X-Division External Review Committee on March 10th, 1999 is
available in HTML, PDF and PostScript formats (LA-UR-99-1069). There is also a manager’s
version of this presentation in PDF and PostScript (LA-UR-99-1070).

Spartan:

Diffusion, P;, and Other Approximate Forms of Radiation Trans- A paper by Gordon L. Ol-
port

son, Larry H. Auer and Michael L. Hall, in the Journal of Quantitative Spectroscopy and Radiative
Transfer, 64:6 (2000) pp. 619-634, is available in PDF format as both the submitted version and
the JQSRT version (LA-UR-99-471).

Analysis of Z Pinch Shock Wave Experiments A Sandia report by Timo-
thy G. Trucano, Kent G. Budge, Jeffery Lawrence, James Asay, Clint Hall, Kathleen Holland,
Carl Konrad, Wayne Trott, Gordon Chandler, and Kevin Fleming is available in PDF format
(SAND99-1255).

Spartan Test Problem Results A presentation by Michael
L. Hall that was made on September 29th, 1998 to the Department of Energy is available in
HTML, PDF and PostScript formats (LA-UR-98-3890). It was presented with a video.

Aspects of Analysis of Z Machine Shock Wave Physics Experi- A presentation by Timothy

ments
G. Trucano that was made on August 6, 1998 to the DOE Interlaboratory MHD Workshop at
Los Alamos National Laboratory is available in PDF format.

Spartan Parallelization and Augustus Time Dependent Results A few slides prepared by Michael

L. Hall as part of a larger presentation to Gil Weigand on June 1st, 1998 are available in HTML,
PDF and PostScript formats (LA-UR-98-3750).
Spartan/Augustus Overview: Simplified Spherical Harmonics A presentation by Michael
and Diffusion for Unstructured Hexahedral Lagrangian Meshes
L. Hall that was made to the Shavano working group on April 22nd, 1998 is available in HTML,
PDF and PostScript formats (LA-UR-98-3766).
“Top Hat” problem (or “Pipe Flow” problem) Results From Some results and graphs by
Spartan
Michael L. Hall from running Spartan on the “Top Hat” problem are available: Data Listing,
Results Summary (PostScript) and compressed tarfile of whole directory.

Augustus:

A Local Support Operator Diffusion Discretization Scheme for A presentation by Michael
Hexahedral Meshes
L. Hall, Jim E. Morel and Mikhail J. Shashkov which was given at the JOWOG 42 meeting
on October 21st, 1999 at Los Alamos National Laboratory — is available in HTML, PDF and
PostScript formats (LA-UR-99-5834).

A Local Support-Operators Diffusion Discretization Scheme for A presentation by Jim Morel,
Hexahedral Meshes
Michael L. Hall, and Mikhail J. Shashkov which was presented at a CNLS Numerical Analysis
Seminar on November 9th, 1999 at Los Alamos National Laboratory — is available in HTML,
PDF and PostScript formats (LA-UR-99-6259).

A Local Support-Operators Diffusion Discretization Scheme for A paper by J. E. Morel, Michael
Hexahedral Meshes
L. Hall, and Mikhail J. Shashkov which has been submitted to the Journal of Computational
Physics, Summer 1999 — is available in HTML, PDF and PostScript formats (LA-UR-99-4358).

Diffusion Discretization Schemes in Augustus: A New Hexahe- A presentation by Michael
dral Symmetric Support Operator Method

L. Hall and Jim E. Morel which was given three times — to the ASCI PI meeting on July 14th,
1998 at Los Alamos National Laboratory; at an X-Division Work In Progress talk on July 29th,
1998; and at the Nuclear Explosives Code Development Conference in Las Vegas, NV on October
29th, 1998 — is available in HTML, PDF and PostScript formats (LA-UR-98-3146).

A Second-Order Cell-Centered Diffusion Difference Scheme for A presentation by Michael
Unstructured Hexahedral Lagrangian Meshes
L. Hall and Jim E. Morel which was given twice — at the International Congress On Compu-
tational And Applied Mathematics in Leuven, Belgium on July 26th, 1996; and at the Nuclear
Explosives Code Developers Conference in San Diego, CA on October 24th, 1996 — is available
in PostScript and PDF formats (LA-CP-97-7). It was presented with a video.

A Second-Order Cell-Centered Diffusion Difference Scheme for A paper by Michael L. Hall
Unstructured Hexahedral Lagrangian Meshes

and Jim E. Morel in the Proceedings of the 1996 Nuclear Explosives Code Developers Conference
(NECDC), UCRL-MI-124790 is available in HTML, PDF and PostScript formats (LA-CP-97-8).

Unique Linear Solver Needs of the Los Alamos Radiation Trans- A presentation by Michael
port Team

L. Hall and John M. McGhee which discusses the peripheral issue of linear solvers with respect
to two main code packages, DANTE and Augustus/Spartan, is available in PostScript and PDF
formats (LA-UR-99-1225). It was presented at the Application Code Developers Meeting of the
Accelerated Strategic Computing Initiative in Albuquerque, NM, August 28th, 1996.

RAYHYD: An ICF Target Simulation Code Written in C+4 A paper by Kent G. Budge,
James S. Peery, Timothy G. Trucano, Mike K. Wong, Jim E. Morel and Michael L. Hall in the
Proceedings of the 1994 Nuclear Explosives Code Developers Conference (NECDC) is available in
PDF format.

Augustus: Unstructured Quadrilateral Mesh Diffusion A preliminary results pre-
sentation by Michael L. Hall and Jim E. Morel that was made very early in the development
of Augustus, without much detail, is available in PostScript and PDF. It was presented internally
at Sandia National Laboratory on May 6th, 1994.

CHAPTER 1. PRESENTATIONS AND ARTICLES

Chapter 2

Installation

2.1 Requirements

In order to unpack the distribution file, you must have:

GNU tar! available and in your path. C&SAR has recently been tested with gtar version 1.13.25.

GNU zip? available and in your path. C&SAR has recently been tested with gzip version 1.3.3.
In order to build and run the program, you must also have:

GNU make? available and in your path. CESAR has recently been tested with gmake version 3.79.1.
GNU m4* available and in your path. C&SAR has recently been tested with gm4 version 1.4.1.
A Fortran 90/95 compiler available and in your path. These compilers are currently supported:

Lahey Compiler on Linux.? CESAR has recently been tested with Lahey F95 version L6.20c.
Absoft Compiler on Linux.® C&ESAR has recently been tested with Absoft F95 version 8.2.
Absoft Compiler on Darwin.” CESAR has recently been tested with Absoft F95 version 8.2.

Sun Workshop Compiler on Solaris.® CESAR has recently been tested with Sun WorkShop 6 up-
date 2 Fortran 95 6.2 on Solaris 6. (Yes, this is very old. Support will soon be removed from
Solaris.)

These compilers have been supported in the past:

MIPSpro Compiler on SGI/IRIX.? CESAR was last tested with MIPSpro compiler version 7.4 on
IRIX 6.5.

In order to generate the documentation yourself, you must also have:

lhttp://www.gnu.org/software/tar/

?http://www.gzip.org/

3http://www.gnu.org/software/make/
4http://www.gnu.org/software/m4/

Shttp://www.lahey.com/

Shttp://www.absoft.com/

Thttp://www.absoft.com/

8http://www.sun.com/

Shttp://www.sgi.com/products/software /irix/tools/mipspro.html

7

8 CHAPTER 2. INSTALLATION

The Document Package!? available and in your path.

2html!! installed on your system. The latex2html-2002.2.1-6.rpm version is sufficient.

112

perl™ installed on your system and in your path. CESAR has recently been tested with perl version 5.8.0.

Alternately, you can retrieve the documentation from the web!3.

2.2 External Packages

CEsAR makes use of several external packages to accomplish its goals.

In most cases, there are (or will be) multiple packages to perform any given function, so that CESAR may
be compiled in many different configurations. For selected packages, optimization and debugging can be
toggled as a group.

2.2.1 MPI Package

MPI, the Message Passing Interface standard, was developed by the MPI Forum to provide a standard for
low-level interprocessor communication in a parallel environment. Several vendors have implementations of
MPI and there is also a portable version of MPI called MPICH.

CESAR does not require MPI directly, but all parallel versions of CESAR use packages which require MPI.
CESAR can be compiled with no MPI (a serial version), or with a vendor-supplied MPI, or with the included
MPICH.

2.2.2 PGSLib Package

PGSLiB(Parallel Gather-Scatter Library) was developed by Robert Ferrell of Cambridge Power Computing
Associates, Ltd.. It is used for high-level parallel communication in C&SAR. PGSLib has both a serial version,
which runs on a single processor, and a parallel version, which allows inter-processor communication.

The parallel version of PGSLIB requires an MPI package (see Section 2.2.1), which can be provided by the
computer vendor or by MPICH (included with CESAR).

CESAR can be compiled without PGSLIB, or with the serial or parallel versions of PGSLiB.

2.2.3 LAPACK Package

LAPACK (Linear Algebra Package) provides routines for solving systems of simultaneous linear equations,
least-squares solutions of linear systems of equations, eigenvalue problems, and singular value problems. The
associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are
related computations such as reordering of the Schur factorizations and estimating condition numbers. Dense
and banded matrices are handled, but not general sparse matrices. LAPACK routines are written so that as
much as possible of the computation is performed by calls to the Basic Linear Algebra Subprograms (BLAS).
LAPACK was developed by Jack Dongarra’s LAPACK Project group at the University of Tennessee.

Highly efficient machine-specific implementations of LAPACK and the BLAS are available for many modern
high-performance computers. If a vendor-supplied version is available, it is prefered.

10http://www.lanl.gov/Document
Uhttp://tug.org/mailman/listinfo/latex2html
2http:/ /www.perl.org/
13http://www.lanl.gov/Caesar/

2.2. EXTERNAL PACKAGES 9

CAESAR does not currently use LAPACK directly, but it may in the future. CESAR currently requires the
LAMG package, which may be compiled with LAPACK. CESAR can be compiled with no LAPACK or
with a vendor-supplied LAPACK, or with the included LAPACK.

2.2.4 LAMG Package

LAMG (Los Alamos Algebraic Multigrid Code) was developed by the Parallel Architectures and Algorithms
Team in the Scientific Computing Group (CIC-19) at LANL. It provides algebraic multigrid and Krylov
solvers to the C&ESAR Project.

CESAR can not currently be compiled without LAMG because LAMG provides the only solvers in C&ESAR.
Eventually, as other solver packages are added and developed within C&ESAR, this dependency will be re-
moved.

10

CHAPTER 2. INSTALLATION

Chapter 3

Standalone Usage

3.1 Graphical User Interface

This section will be expanded in the future.

11

12

CHAPTER 3. STANDALONE USAGE

Chapter 4

Calling the Caesar Package

This section will be expanded in the future.

13

14

CHAPTER 4. CALLING THE CESAR PACKAGE

Part 11

Caesar Package Code Manual

15

Chapter 5
Design Decisions

e Documentation will be an integral part of the program, and will be done via my Document package.
The documentation will be available in both HTML and PostScript form, via ITEX and BATEX2html.

e Assume gmake is available. This allows many coding constructions not found in vendor makes, and
increases portability.

e “Design by Contract” coding methodology will be used, but some terminology may be changed to be
more meaningful.

— For instance, “assertions” will be used, but will be referred to as “verifications”. To “assert” means
to state that something is true, whereas to “verify” means to test to make sure that something is
true. Other nomenclature that I considered and rejected includes: check, confirm, certify, warrant,
ascertain, ensure, guarantee. All of these are better than “assert”, but I considered “verify” to be
the best.

— Also, “invariant” will be referred to as “valid state”, because it is more indicative of the test being
done. Other nomenclature that I considered and rejected includes: self-consistent, consistent,
well-formed, valid.

Granted, I may lose a small amount of understanding on the part of C programmers who are looking
at my code (and are familiar with the terms “assert” and “invariant”), but I will gain a great deal of
understanding from people that are new to the “Design by Contract” method.

e Assume gm4 is available. This means that line numbers from the source code can be output as error
messages from the verifications.

e Assume that all error line references are to the original, unprocessed files. This means that any header
files can add blank lines, which means that the ubiquitous “dnl” can be eliminated, which will greatly
increase readability.

e In addition to the VERIFY macros, I'm making a WARN_IF macro that generates a warning if a test
fails but continues program execution.

e I considered using DejaGnu to automate testing, but ultimately rejected it. The reasons for rejection
include:

— It seems that DejaGnu’s main thrust is testing on different platforms, and it requires Tcl and
Expect to run. I don’t want to require all three programs (Tcl, Expect and DejaGnu) to be able
to test on other architectures.

— It looks non-trivial to set up, especially since I don’t know Tcl and Expect.

— It’s unclear what benefit, if any, would be derived from using it.

17

18

CHAPTER 5. DESIGN DECISIONS

My current solution for testing, as far as modules are concerned, is to include a test routine at the end
of each module which will only be activated if a gm4 flag is set. I'm including the "script” necessary
to run each module test as Self-Documentation text that my perl script Document can pick out.

Chapter 6

m4 Preprocessing

The CESAR Code Package makes extensive use of the m4 preprocessor to modify the Fortran 90 source code.
All Fortran 90 source is preprocessed by m4 before compilation. The Gnu version of m4 is required.

Some of the uses of the m4 preprocessor in CESAR include unit testing, verification and warning statements
(which implement design by contract), intrinsic type definition, and code replication.

6.1 Global m4 Settings

The “settings” set of m4 commands defines the m4 environment that is used in the C&SAR Code Package:

e The m4 quotation characters are changed to “[” and “]”, to avoid interaction with standard F90 syntax.

e The m4 comment character is changed to “!”, to coincide with the F90 comment character. Note that
comments in m4 are echoed to the output with no macro expansion. To avoid echoing at all, the m4
command “dnl” must be used (this may change in future versions of Gnu m4).

e Builtin m4 macros must be called with a prefix of “m4_”. For example, the “format” macro must be
called via “m4 format”. Therefore, all of the m4 preprocessing in the CESAR Code Package must be
done with Gnu m4, using either the -P or —-prefix-builtins option.

e Certain commonly used m4 builtins are defined to be usable without an “m4_” prefix.

In addition to these environmental settings, some globally useful macros are defined.

m4 macros defined in the include/settings.m4 file:

__date__ Date field (mm/dd/yy).

__file__ Unprefixed form of m4___file__.

__line__ Unprefixed form of m4___line__.

__time__ Time field (hh:mm:ss, 24-hour).

define Unprefixed form of m4_define.

dnl Unprefixed form of m4_dnl.

expand Force macro expansion in words containing underscores.

firstword Returns the first word from a space-delimited list of words.

forloop A numerical text iterator (see code listing in section A.1 for input/output details).
fortext A textual text iterator (see code listing in section A.1 for input/output details).
ifdef Unprefixed form of m4_ifdef.

ifelse Unprefixed form of m4_ifelse.

19

20 CHAPTER 6. M4 PREPROCESSING

include Unprefixed form of m4_include.

m4_chop Removes last character of input string.

m4_die Prints error message and terminates.

popdef Unprefixed form of m4_popdef.

pushdef Unprefixed form of m4_pushdef.

tailwords Returns everything except the first word from a space-delimited list of words.
undefine Unprefixed form of m4_undefine.

The Settings m4 Macros code listing in section A.1l contains additional documentation.

6.2 Type m4 Macros

The “type” set of m4 macros allows intrinsic F90 types to be defined in a manner similar to defined types,
making use of the kind parameter to ensure consistency and allow for double and single precision versions
of the code. The type macros allow the following constructions to be used in the C&SAR Code Package:

type(real) :: realvaril
type(real,0) :: realvar2
type(real,3) :: realvar3

type(integer,1), intent(out) :: intvarl
type(integer,4,np) :: intvar2
type(logical,1l,np) :: logvar
type(character,8) :: charvaril
type(character,*,2,np) :: charvar?2

type(defined) :: defvar

intvar = changetype(integer, variable)
realvar = changetype(real, variable)

This code is expanded by Gnu m4 into the following valid F90 code:

real (kind=KIND(1.0d40)) :: realvarl

real (kind=KIND(1.0d0)) :: realvar2

real (kind=KIND(1.0d0)), pointer, dimension(:,:,:) :: realvar3
integer (kind=KIND(1)), pointer, dimension(:), intent(out) :: intvarl
integer (kind=KIND(1)), dimension(:,:,:,:) :: intvar2

logical (kind=KIND(.true.)), dimension(:) :: logvar

character (len=8) :: charvaril

character (len=*), dimension(:,:) :: charvar?2

type(defined) :: defvar

intvar = INT(variable, KIND(1))
realvar = REAL(variable, KIND(1.0d40))

Note that this set of m4 macros depends on the m4 commands in the settings.m4 file (see section 6.1) and
on the SINGLE and UNICOS macro definitions.

m4 macros defined in the include/types.m4 file:

changetype Used for intrinsic type conversions.

pnt$dim Private macro used in type.

real$kind Private macro used in type and changetype.

type Used for intrinsic type definition. (see code listing in section A.2 for input/output

details).

6.3. VERIFY M4 MACROS 21

The Type m4 Macros code listing in section A.2 contains additional documentation.

6.3 Verify m4 Macros

Power is not revealed by striking hard or often, but by striking true. — Honore de Balzac (1799-
1850)

The “verify” set of m4 macros enable the conditional compilation of the verification statements which are
used to implement “Design by Contract” methodology in the C&SAR Code Package. Verification statements!
are simply logical tests on variables which can be conditionally compiled into the code, allowing for extreme
error checking if they are compiled in and unfettered execution speed if they are compiled out. The “Design
by Contract” methodology extends this idea slightly by specifying when these verifications are to be done:
input requirements are verified upon entry into a routine and output guarantees are verified before routine
exit.

The C&ESAR Code Package further extends this idea in two ways:

e In addition to VERIFY commands which halt execution if they are not satisfied, WARN_IF commands
output a warning message and continue execution if they are not satisfied.

e Both VERIFY and WARN_IF commands are conditionally compiled in based on a level variable
(DEBUG_LEVEL for VERIFY and WARNING_LEVEL for WARN_IF) which can be set for each instance
of a command individually. This allows a great deal of user control.

The syntax for the VERIFY/WARN_IF macros is given by:

VERIFY(<logical expression>,<activation level>)
WARN_IF (<logical expression>,<activation level>)

where <logical expression> is the F90 test to be satisfied and <activation level> is the value of the
appropriate LEVEL variable (DEBUG_LEVEL for VERIFY and WARNING_LEVEL for WARN_IF) at which the
test is compiled into the executable program — for level values less than the <activation level>, the test
is commented out. To reiterate, if the debug or warning level is not set high enough to activate a particular
command, that command will be commented out and will not be executed by the code.

The level at which a particular command will activate should be set according to a combination of criteria:
importance and cost. An expensive (in terms of cpu-time) command, ceteris paribus, should have a higher
<activation level> than a cheaper command. Commands whose satisfaction is more important should
have a lower <activation level>. Verification or warning commands that specify an <activation level>
of -1 will always be executed.

Code compiled with lower debug or warning levels will necessarily be as fast as or faster than code compiled
with higher levels, but will also include fewer checks for accuracy. A debug or warning level of zero should
include only those checks that the code author thought were absolutely necessary. Setting the debug or
warning level to -1 will eliminate all commands of the specified type (except those with activation levels of
-1).

When a VERIFY/WARN_IF test is compiled into the code, an if-block is inserted which evaluates the test.
If the test fails, an output message is printed which contains the text, filename, and line number of the failed
test. VERIFY commands then abort program execution, while WARN_IF commands continue.

There is a slight difference in the coding for the Intrinsic Classes (see chapter 7), because they are lower
level than the communication routines, and therefore require serial coding. To trigger this difference, the
Intrinsic Classes specify “define ([VERIFY_COMMUNICATION], [Locall)” in their headers.

1C and C++ programmers call a similar concept “assertions”, see B. W. Kernighan and D. M. Ritchie, The C Programming
Language, 1988, page 253

22 CHAPTER 6. M4 PREPROCESSING

As an example, assume that a file named verify_example contains these lines:

m4_include(settings.m4)
m4_include (verify.m4)

VERIFY(i < 1, 5)
VERIFY(j > 2, 6)
VERIFY(k < 4, 7)

define ([DEBUG_LEVEL], 2)

VERIFY(Valid_State(matrix), 1)
VERIFY(Valid_State(matrix), 2)
VERIFY(Valid_State(matrix), 3)

When this file is processed by Gnu m4, it is expanded into the following valid F90 code, if the DEBUG_LEVEL
variable is not set:

if (.not. Global_ALL(i < 1)) then
if (this_is_IO0_PE) then
write (6,*) "Verification failed: ", &

"i<1, ", &
"file verify_example, ", &
"line 4."
end if
call Abort
end if

if (.not. Global_ALL(j > 2)) then
if (this_is_I0_PE) then

write (6,*) "Verification failed: ", &
|Ij > 2, II, &
"
"line 5."
end if
call Abort
end if

if (.not. Global_ALL(k < 4)) then

!
!

!

!

!

!

!

!

!

!

!

!

!

! "file verify_example, ", &
!

!

!

!

!

! if (this_is_I0_PE) then
!

!

!

!

!

!

!

write (6,*) "Verification failed: ", &
"k < 4, ", &
"file verify_example, ", &
"line 6."
end if
call Abort
end if

if (.not. Global_ALL(Valid_State(matrix))) then
if (this_is_IO_PE) then

write (6,%) "Verification failed: ", &
"Valid_State(matrix), ", &
"file verify_example, ", &
"line 9."
end if
call Abort
end if

if (.not. Global_ALL(Valid_State(matrix))) then

6.3. VERIFY M4 MACROS 23

if (this_is_IO_PE) then

write (6,%) "Verification failed: ", &
"Valid_State(matrix), ", &
"file verify_example, ", &
"line 10."
end if
call Abort
end if

! if (.not. Global_ALL(Valid_State(matrix))) then
! if (this_is_IO_PE) then

! write (6,%*) "Verification failed: ", &

! "Valid_State(matrix), ", &

! "file verify_example, ", &

! "line 11."

! end if

! call Abort

'

end if

If the DEBUG_LEVEL m4 variable is set to a value of 6, via the command line option -DDEBUG_LEVEL=6, then
the expansion becomes:

if (.not. Global_ALL(i < 1)) then
if (this_is_I0_PE) then

write (6,%) "Verification failed: ", &
"1, ", &
"file verify_example, ", &
"line 4."
end if
call Abort
end if

if (.not. Global _ALL(j > 2)) then
if (this_is_IO0_PE) then

write (6,%) "Verification failed: ", &
">2,", &
"file verify_example, ", &
"line 5."
end if
call Abort
end if

if (.not. Global_ALL(k < 4)) then
if (this_is_IO_PE) then
write (6,%*) "Verification failed: ", &

!
!

!

! "k < 4, ", &

! "file verify_example, ", &
! "line 6."

! end if

! call Abort

! end if

if (.not. Global_ALL(Valid_State(matrix))) then
if (this_is_I0_PE) then

write (6,*) "Verification failed: ", &
"Valid_State(matrix), ", &
"file verify_example, ", &

"line 9."

24 CHAPTER 6. M4 PREPROCESSING

end if
call Abort

end if

if (.not. Global_ALL(Valid_State(matrix))) then
if (this_is_I0_PE) then

write (6,%) "Verification failed: ", &
"Valid_State(matrix), ", &
"file verify_example, ", &
"line 10."
end if
call Abort
end if

! if (.not. Global_ALL(Valid_State(matrix))) then
! if (this_is_IO0_PE) then

! write (6,*) "Verification failed: ", &

! "Valid_State(matrix), ", &

! "file verify_example, ", &

! "line 11."

! end if
! call Abort
! end if

If the WARN_IF macro had been used instead of the VERIFY macro (and the WARNING_LEVEL were set
instead of the DEBUG_LEVEL), then the only changes in the output of the above examples would be that the
Abort call would not have appeared, the test would not have been negated, and a Global ANY would have
been used instead of a Global ALL.

If the VERIFY_COMMUNICATION macro had been set to Local, then the Global _ALL call would not have
been used, the IO_PE check would not have appeared, and the Abort call would have been replaced with a
stop.

As an additional refinement, any quotation characters in the logical expression are removed from the output
string to prevent confusion with quoting there. Quotation marks in the logical expression should therefore
be paired.

Note that this set of m4 macros depends on the m4 commands in the settings.m4 file (see section 6.1) and
on the DEBUG_LEVEL and WARNING_LEVEL macro definitions.

m4 macros defined in the include/verify.m4 file:

DEBUG_LEVEL Verification is turned on for VERIFY commands whose activation level is equal to
or less than the DEBUG_LEVEL.
VERIFY Compile in or comment out a test which halts execution if unsatisfied.

WARNING_LEVEL Warnings are turned on for WARN_IF commands whose activation level is equal to
or less than the WARNING_LEVEL.

WARN_IF Compile in or comment out a test which prints a warning and continues execution
if satisfied.

The Verify m4 Macros code listing in section A.3 contains additional documentation.

6.4 Replicate m4 Macros

The “replicate” set of m4 macros is used to replicate a routine so that a version exists for every possible
array dimensioning (scalars plus up to seven-dimensioned arrays, the maximum allowed in F90). To use the
replicate macros in the CESAR Code Package,

6.4. REPLICATE M4 MACROS 25

o define the interface using the REPLICATE_INTERFACE macro,
e define the REPLICATE_ROUTINE, using the REP_EXPAND, ARRAY_ONLY and SCALAR_ONLY macros as needed,

¢ invoke the REPLICATE macro to generate multiple versions of the REPLICATE_ROUTINE for scalars and
all array dimensions, or

e invoke the REPLICATE_ARRAYS macro to generate multiple versions of the REPLICATE_ROUTINE for all
array dimensions only, and write a separate routine for scalars (sometimes useful if the array and scalar
versions have little in common).

Take the following code segment as an example:

module test_replicate
REPLICATE_INTERFACE([Generic_Routine], [Specific_Routine])
contains

define ([REPLICATE_ROUTINE], [

function Specific_Routine_$1 (R REP_ARGS([var[]il))
type(real,$1) :: R
REP_DECLARE([type(integer)], [var[]i])
REP_ALLOCATE(R, [var[]lil, [status])
ARRAY_ONLY DEALLOCATE(R)
SCALAR_ONLY R = 999.
<other routine contents>

end function Specific_Routine_$1

D
REPLICATE
end module test_replicate

This code is expanded by Gnu m4 into the following valid F90 code:

module test_replicate
interface Generic_Routine
module procedure Specific_Routine_0
module procedure Specific_Routine_1
module procedure Specific_Routine_2
module procedure Specific_Routine_3
module procedure Specific_Routine_4
module procedure Specific_Routine_5
module procedure Specific_Routine_6
module procedure Specific_Routine_7
end interface
contains

function Specific_Routine_0 (R)
real (kind=KIND(1.0d0)) :: R
! DEALLOCATE(R)
R = 999.
<other routine contents>

end function Specific_Routine_0

function Specific_Routine_1 (R, varl)
real (kind=KIND(1.0d0)), pointer, dimension(:) :: R
integer (kind=KIND(1)) :: varl

26

CHAPTER 6. M4 PREPROCESSING

ALLOCATE(R(varl), stat=status)
DEALLOCATE(R)
! R = 999.
<other routine contents>
end function Specific_Routine_1

function Specific_Routine_2 (R, varl, var2)
real (kind=KIND(1.0d0)), pointer, dimension(:,:) :: R
integer (kind=KIND(1)) :: varl, var2
ALLOCATE(R(varl, var2), stat=status)
DEALLOCATE(R)
! R = 999.
<other routine contents>
end function Specific_Routine_2

function Specific_Routine_3 (R, varl, var2, var3)
real (kind=KIND(1.0d0)), pointer, dimension(:,:,:) :: R
integer (kind=KIND(1)) :: varl, var2, var3
ALLOCATE(R(varl, var2, var3), stat=status)
DEALLOCATE (R)
! R = 999.
<other routine contents>

end function Specific_Routine_3

function Specific_Routine_4 (R, varl, var2, var3, var4)
real (kind=KIND(1.0d0)), pointer, dimension(:,:,:,:) :: R
integer (kind=KIND(1)) :: varl, var2, var3, var4
ALLOCATE(R(varl, var2, var3, var4), stat=status)
DEALLOCATE(R)
! R = 999.
<other routine contents>

end function Specific_Routine_4

function Specific_Routine_5 (R, varl, var2, var3, var4, varb)
real (kind=KIND(1.0d40)), pointer, dimension(:,:,:,:,:) :: R
integer (kind=KIND(1)) :: varl, var2, var3, var4, varb
ALLOCATE(R(varl, var2, var3, var4, varb), stat=status)
DEALLOCATE(R)
! R = 999.
<other routine contents>

end function Specific_Routine_5

function Specific_Routine_6 (R, varl, var2, var3, var4, varb, var6)

real (kind=KIND(1.0d0)), pointer, dimension(:,:,:,:,:,:) :: R
integer (kind=KIND(1)) :: varl, var2, var3, var4, varb, var6
ALLOCATE(R(varl, var2, var3, var4, varb, var6), stat=status)
DEALLOCATE (R)

! R = 999.

<other routine contents>
end function Specific_Routine_6

function Specific_Routine_7 (R, varl, var2, var3, var4, varb5, var6, var7)
real (kind=KIND(1.0d0)), pointer, dimension(:,:,:,:,:,:,:) :: R
integer (kind=KIND(1)) :: varl, var2, var3, var4, varb, var6, var7

6.5. SUPERCLASS M4 MACROS 27

ALLOCATE(R(varl, var2, var3, var4, varb, var6, var7), stat=status)
DEALLOCATE(R)
!' R = 999.
<other routine contents>
end function Specific_Routine_7

end module test_replicate

Note that this set of m4 macros depends on the m4 commands in the settings.m4 file (see section 6.1) and
on the REPLICATE_ROUTINE macro definition.

m4 macros defined in the include/replicate.m4 file:

ARRAY_ONLY Used to comment out lines for scalars, but leave them untouched
for arrays.

REPLICATE Replicates a routine for all array dimensions and scalars.

REPLICATE_ARRAYS Replicates a routine for all array dimensions only.

REPLICATE_INTERFACE Defines the interface block for the replicated routine.

REP_ALLOCATE Used to allocate a replicated variable.

REP_ARGS Used to replicate an argument list.

REP_DECLARE Used to decalre a replicated variable.

REP_EXPAND Used in the REPLICATE_ROUTINE macro to expand to text that

varies with the dimensioning (see code listing in section A.4 for
input/output details).

REP_NUMBER The number of the dimension of the current routine, used inter-
nally.

SCALAR_ONLY Used to comment out lines for arrays, but leave them untouched
for scalars.

type(vartype, $1) A useful construction for replicated procedures which is defined by

the types macros (see section 6.2).

The Replicate m4 Macros code listing in section A.4 contains additional documentation.

6.5 Superclass m4 Macros

The “superclass” set of m4 macros is used to automatically create a superclass module that will dynamically
dispatch superclass calls to the correct subclass routine or function. This achieves run-time polymorphism,
which is commonly considered to be too much effort in Fortran 90, in an easily implemented fashion.

To use the “superclass” set of m4 macros certain naming and coding conventions must be followed. Assuming
that the superclass name is “Matrix”, that three subclasses exist named “One”, “Two”, and “Three”, and
that the routine to be dynamically dispatched is named “Solve”, the following names must be used:

superclass derived type: Matrix_type

subclass derived types: One_type, Two_type, Three_type
subclass module names: One_Class, Two_Class, Three_Class
superclass module name: Matrix_Class

superclass routine name: Solve_Matrix

superclass interface name: Solve

subclass routine names: Solve_One, Solve_Two, Solve_Three
subclass interface name: Solve

In addition, the superclass derived type must be:

type Matrix_type

28 CHAPTER 6. M4 PREPROCESSING

character (len=80) :: Subclass
type(One_type) :: One
type(Two_type) :: Two
type(Three_type) :: Three

end type Matrix_type

To use the superclass macros in the C&SAR Code Package,

e define the superclass name in the SUPERCLASS macro,
e define the subclass names as a space-delimited list in the SUBCLASSES macro,

e use the SUPERCLASS_USE_ASSOCIATIONS, SUPERCLASS_TYPE, SUPERCLASS_ROUTINE and SUPERCLASS_-
FUNCTION macros as needed to define the superclass module.

Take the following code segment as an example:

define ([SUPERCLASS], [Matrix])
define ([SUBCLASSES], [One Two Three])

module SUPERCLASS[]_Class

SUPERCLASS_USE_ASSOCIATIONS
SUPERCLASS_TYPE

contains

SUPERCLASS_ROUTINE([Initialize],
[type(real)], [al, [The a variablel,
[type(integer), intent(in)], [b], [The b variable])

SUPERCLASS_FUNCTION([Verify_State], [type(logical)],
[type(real)], [b]l, [The b variable])

SUPERCLASS_ROUTINE([Finalize],
[type(real)], [c], [The c variable],
[type(real)], [d], [The d variablel)

end module SUPERCLASS[]_Class
This code is expanded by Gnu m4 into the following valid F90 code:

module Matrix_Class

use One_Class
use Two_Class
use Three_Class

type Matrix_type
character (1en=80) :: Subclass
type(One_type) :: One
type(Two_type) :: Two
type(Three_type) :: Three

end type Matrix_type

contains

6.5. SUPERCLASS M4 MACROS

subroutine Initialize_Matrix (Matrix, a, b)

type(Matrix_type) Matrix
real (kind=KIND(1.0d0)) :: a ! The a variable
integer (kind=KIND(1)), intent(in) :: b ! The b variable

select case (Matrix%Subclass)
case ("One")
call Initialize (Matrix’%One, a, b)
case ("Two")
call Initialize (Matrix)Two, a, b)
case ("Three")
call Initialize (Matrix)Three, a, b)
case default
write (6,%) ’Error: no ’, Matrix)Subclass, ’ in Matrix_Class.’
end select

end subroutine Initialize_Matrix
function Verify_State_Matrix (Matrix, b)

type(Matrix_type) Matrix
logical (kind=KIND(.true.)) :: Verify_State, Verify_State_Matrix
real (kind=KIND(1.0d0)) :: b ! The b variable

select case (Matrix%Subclass)
case ("One")
Verify_State_Matrix
case ("Two")
Verify_State_Matrix = Verify_State (Matrix)Two, b)
case ("Three")
Verify_State_Matrix
case default
write (6,%) ’Error: no ’, MatrixY%Subclass, ’ in Matrix_Class.’
end select

Verify_State (Matrix%One, b)

Verify_State (Matrix)Three, b)

end function Verify_State_Matrix
subroutine Finalize_Matrix (Matrix, c, d)

type (Matrix_type) Matrix
real (kind=KIND(1.0d0)) :: c ! The c variable
real (kind=KIND(1.0d0)) :: d ! The d variable

select case (Matrix),Subclass)
case ("One")
call Finalize (Matrix%One, c, d)

29

30 CHAPTER 6. M4 PREPROCESSING

case ("Two")
call Finalize (Matrix%Two, c, d)
case ("Three")
call Finalize (Matrix%Three, c, d)
case default
write (6,%) ’Error: no ’, Matrix)Subclass, ’ in Matrix_Class.’
end select

end subroutine Finalize_Matrix

end module Matrix_Class

Note that this set of m4 macros depends on the m4 commands in the settings.m4 file (see section 6.1) and
on the SUPERCLASS and SUBCLASSES macro definitions.

m4 macros defined in the include/superclass.m4 file:

SUPERCLASS_ARGUMENTS Used internally by the SUPERCLASS_ROUTINE and SUPERCLASS_-
FUNCTION macros.

SUPERCLASS_DECLARATIONS Used internally by the SUPERCLASS_ROUTINE and SUPERCLASS_-
FUNCTION macros.

SUPERCLASS_FUNCTION Expands into a complete function for the superclass. This func-

tion dynamically dispatches calls to the superclass to the correct
subclass function.

SUPERCLASS_ROUTINE Expands into a complete subroutine for the superclass. This sub-
routine dynamically dispatches calls to the superclass to the correct
subclass routine.

SUPERCLASS_TYPE Outputs a standard superclass type definition.

SUPERCLASS_USE_ASSOCIATIONS Outputs the correct use associations for the superclass.

The Superclass m4 Macros code listing in section A.5 contains additional documentation.

6.6 Unit Test m4 Macros

We like to test things. .. No matter how good an idea sounds, test it first. — Henry Block, CEO,
HER Block

The “unit test” set of m4 macros provides the capability to conditionally compile in F90 statements for use
during unit testing. Unit testing is the ability to test a particular routine in isolation from the remainder of
the code. Unit testing is accomplished by including a main program and necessary auxiliary routines at the
end of the file containing the routine to be tested, in this manner:

ifdef ([UNIT_TEST], [
program Unit_Test

<program contents>
end

D

During a standard compilation, the Unit_Test program will not be present because UNIT_TEST is not
defined. To do unit testing, the file is processed with “-DUNIT_TEST” defined on the m4 command line,
and the Unit_Test program is compiled in.

In addition to those capabilities, which are provided in each F90 source file, the ”unit test” set of m4 macros
allows the following constructions to be used in the C&SAR Code Package:

6.7. FLAGS MODULE 31

TESTWRITE (6,100) ’Output test variables ==>’, &
IF_UNIT_TEST x1, x2, x3

IF_UNIT_TEST 100 format (a, 3(1pel3.6))

IF_NOT_UNIT_TEST debug = O

This code is expanded by Gnu m4 into the following valid F90 code:

! write (6,100) ’QOutput test variables ==>’, &

' x1, x2, x3
! 100 format (a, 3(1pel3.6))
debug = 0

if UNIT_TEST is not defined. If UNIT_TEST is defined, then the same code is expanded by Gnu m4 into
the following:

write (6,100) ’Output test variables ==>’, &
x1l, x2, x3

100 format (a, 3(1pel3.6))

! debug = 0

which allows for statements to be conditionally compiled in when unit testing is being done.

Note that this set of m4 macros depends on the m4 commands in the settings.m4 file (see section 6.1) and
on the UNIT_TEST macro definition.

m4 macros defined in the include/unit_test.m4 file:

TESTWRITE Write statement toggled by the UNIT_TEST macro.
IF_UNIT_TEST Comments out code unless UNIT_TEST is defined.
IF_NOT_UNIT_TEST Comments out code if UNIT_TEST is defined.

The Unit Test m4 Macros code listing in section A.6 contains additional documentation.

6.7 Flags Module

The Flags Module is used to define flag constants that are used in the C&SAR Code Package.

Flags Module public parameters:

Intrinsic Initialization/Finalization Flags

finalize_character_flag Value used to finalize characters.
finalize_integer_flag Value used to finalize integers.
finalize_logical_flag Value used to finalize logicals.
finalize_real_flag Value used to finalize reals.
initialize_character_flag Value used to initialize characters.
initialize_integer_flag Value used to initialize integers.
initialize_logical_flag Value used to initialize logicals.
initialize_real_flag Value used to initialize reals.

Derived Type Initialization Flags

initialized_flag Value used to signify derived type initialization.
uninitialized_flag Value used to signify derived type lack of initialization (when a derived type is
finalized).

The Flags Module code listing in § A.7 on page 208 contains additional documentation.

32 CHAPTER 6. M4 PREPROCESSING

6.8 Numbers Module

The Numbers Module is used to define number constants that are used in the C&SAR Code Package.

Numbers Module public parameters:

Numbers 0—9
zZero
one
two
three
four
five
six
seven
eight
nine

© O U W —=O

Numbers 10-19

ten 10
eleven 11
twelve 12
thirteen 13
fourteen 14
fifteen 15
sixteen 16
seventeen 17
eighteen 18
nineteen 19

Numbers 20-100, by tens

twenty 20
thirty 30
forty 40
fifty 50
sixty 60
seventy 70
eighty 80
ninety 90
hundred 100
Fractions
half 3
third 3
1
fourth I
fifth 3
sixth %
seventh %
eighth 3
ninth %
tenth fﬁ

6.8. NUMBERS MODULE

Forms of pi

pi ™
sqrtpi VT
. . 1
invpi -
pisqr 2
. . 4
fourthirdspi 5
twopi 2
threepi 3
fourpi 4
halfpi 5
thirdpi 3
fourthpi T

Decimal multipliers

deca 10!
hecto 102
kilo 103
mega 108
giga 10°
tera 1012
peta 108
exa 1018
zetta 102!
yotta 102
deci 101
centi 102
milli 103
micro 106
nano 10—°
pico 1012
femto 1018
atto 1018
zepto 10—
yocto 1024

The Numbers Module code listing in § A.8 on page 209 contains additional documentation.

34

CHAPTER 6. M4 PREPROCESSING

Chapter 7

Intrinsics Module

The Greek word for leisure was scholé (oxoAn), whence our school. For leisure meant to them
opportunity for pursuits of intrinsic worth, such as a man would choose for his own sake — De
Burgh

The Intrinsics Module provides a thin wrapper for the standard F90 intrinsic types (Integer, Real, Character,
and Logical), giving them the fundamental procedures necessary to be considered a class (in the CESAR
sense). These fundamental procedures are Initialize, Finalize, and Valid_State. The CESAR intrinsic
types are the pointered versions of standard F90 intrinsic types for multi-dimensional arrays, and non-
pointered (static) scalars. The Valid_State procedures also have a version for non-pointered arrays, which
can be accessed by the name Valid_State_NP.

In addition to the fundamental class procedures, the Intrinsics Module provides some functions that are
“missing” in F90:

Function Intrinsic Type

ALL Logical Scalars

ANY Logical Scalars

COUNT Integer/Logical Scalars
MaxVal Real and Integer Scalars
MinVal Real and Integer Scalars

SUM Real and Integer Scalars
and some useful functions involving intrinsics:
Function Description
InInterval. True if argument is in the specified interval.
InSet. True if argument is in the specified set.
.NotInInterval. True if argument is not in the specified interval.
.NotInSet. True if argument is not in the specified set.
.VeryClose. True if arguments are within 10 times the local spacing distance between variables.

In addition to the F90 standard intrinsic types, the Status Class is defined here. The Status Class is, in a way,
even more basic than the intrinsic types, as it is used in the Initialization and Finalization of the intrinsic
types themselves. Several procedures associated with the manipulation of Status objects are included.

The Intrinsics Module code listing in § B on page 211 contains additional documentation.

7.1 Status Class

The Status Class is used to handle status flags in the CEsAR Code Package.

35

36 CHAPTER 7. INTRINSICS MODULE

Status public procedures:

Fundamental procedures

Initialize Initializes a status variable (vector or scalar).

Finalize Finalizes a status variable (vector or scalar).

Valid_State Returns false iff a status variable (vector or scalar) is in an invalid state.

Operations

Consolidate Consolidates a vector status variable into a scalar status variable (also has an as-
signment interface).

Equal Returns true when its arguments are equal. Versions of this function for Status-
Status and Status-Character comparisons are available.

Error Returns true if the severity level of a scalar status variable is ‘Error’.

Get Gets an output character string according to the specified status variable (also has
an assignment interface).

Normal Returns true if the severity level of a scalar status variable is ‘Normal’.

Not_Equal Returns true when its arguments are not equal. Versions of this function for Status-
Status and Status-Character comparisons are available.

Set Sets a scalar status variable according to the specified selector character value (also
has an assignment interface).

Warning Returns true if the severity level of a scalar status variable is ‘Warning’.

Status public defined types:
Status_type The Status Class variable type.

The Status Class code listing in § B.1 on page 211 contains additional documentation. The Status Class
also contains a Unit Test Program which is listed in § B.1.19 on page 229.

7.1.1 Initialize_Status Procedure

The Initialize Status procedure initializes a status variable.
Calling syntax:
call Initialize (S)

Output variable:

S The status, which has been initialized to a value of “Unset”.

The Initialize Status code listing in § B.1.1 on page 215 contains additional documentation.

7.1.2 Initialize_Status_Vector Procedure

The Initialize_Status_Vector procedure initializes a vector of status variables.
Calling syntax:
call Initialize (8)

Output variable:

S The status vector, which has been initialized to a value of “Unset”.

7.1. STATUS CLASS 37

The Initialize Status_Vector code listing in § B.1.2 on page 215 contains additional documentation.

7.1.3 Finalize_Status Procedure

The Finalize _Status procedure finalizes a status variable.
Calling syntax:
call Finalize (S)

Input/Output variable:

S The status, which has been finalized.

The Finalize Status code listing in § B.1.3 on page 216 contains additional documentation.

7.1.4 Finalize_Status_Vector Procedure

The Finalize_Status_Vector procedure finalizes a vector of status variables.
Calling syntax:
call Finalize (S)

Input/Output variable:

S The status vector, which has been finalized.

The Finalize Status_Vector code listing in § B.1.4 on page 217 contains additional documentation.

7.1.5 Valid_State_Status Procedure

The Valid_State_Status procedure returns true iff the status is in a valid state — that is, iff the status passes
all of the valid state tests.

Calling syntax:
Logical = Valid_State(S)

Input variable:

S The status variable to be checked.

Output variable:

Valid_State True iff the status is in a valid state.

The Valid_State_Status code listing in § B.1.5 on page 217 contains additional documentation.

7.1.6 Valid_State_Status_Vector Procedure

The Valid_State_Status_Vector procedure returns true iff the status is in a valid state — that is, iff the status
passes all of the valid state tests.

38 CHAPTER 7. INTRINSICS MODULE

Calling syntax:
Logical = Valid_State(S)

Input variable:

S The status vector to be checked.

Output variable:

Valid_State True iff the entire status vector is in a valid state.

The Valid_State_Status_Vector code listing in § B.1.6 on page 218 contains additional documentation.

7.1.7 Character_Equal_Status Procedure

The Character_Equal_Status procedure returns a logical value which is true when the status variable is
the same state specified by the input character string, used as a selector flag (see Set_Status procedure in
section 7.1.13 for a list of valid flags). It has an operator (== or .eq.) interface.

Calling syntax:

Logical = C == SS or
Logical = Equal(C, SS)

Input variable:
C The selector flag string to be compared.
SS The status variable to be compared.
Output variable:

Equal True iff the status variable and the selector flag string match.

The Character_Equal Status code listing in § B.1.7 on page 219 contains additional documentation.

7.1.8 Character_Not_Equal_Status Procedure

The Character Not_Equal Status procedure returns a logical value which is true when the status variable is
not equal to the state specified by the input character string, used as a selector flag (see Set_Status procedure
in section 7.1.13 for a list of valid flags). It has an operator (/= or .ne.) interface.

Calling syntax:

C /=SS or
Not_Equal(C, SS)

Logical
Logical

Input variable:

C The selector flag string to be compared.
SS The status variable to be compared.

Output variable:

7.1. STATUS CLASS 39

Not_Equal True iff the two status variables have different states.

The Character Not_Equal _Status code listing in § B.1.8 on page 219 contains additional documentation.

7.1.9 Consolidate_Status Procedure

The Consolidate_Status procedure returns a single status variable that is the result of consolidating an input
status vector. It has an assignment interface so that it may be called by assigning a vector Status_type
variable to a scalar Status_type variable.

The input status vector (Multiple_S) is combined into the output status variable (Consolidated_S) by looping
over each input status variable. The following table shows the value of Consolidated S after it has been
combined with a single value from the vector Multiple_S, based on the previous value of Consolidated_S:

Consolidated_S Multiple_S(i)

(previous) Unset Success ME MW Error Warning
Unset Unset Success ME MW Error Warning
Success Success Success ME MW Error Warning

ME ME ME ME ME ME ME

MW MwW MW ME MW ME MW

Error Error Error ME ME MEj} ME

Warning Warning Warning ME MW ME MW

where ME stands for ‘Multiple Error’, MW stands for ‘Multiple Warning’ and } signifies that ME or MW is
set only if the two errors or warnings are different from each other.

Calling syntax:

Consolidated_S = Multiple_S or
call Consolidate (Consolidated_S, Multiple_S)

Input variable:

Multiple_S A vector of status variables to be consolidated.

Output variable:

Consolidated_S The status that is a result of consolidating the input status vector.

The Consolidate _Status code listing in § B.1.9 on page 220 contains additional documentation.

7.1.10 Error_Status Procedure
The Error_Status procedure returns true iff the status is an error status — that is, iff the status severity level
is ‘error’.
Calling syntax:
Logical = Error(S)

Input variable:

S The status variable to be examined.

40 CHAPTER 7. INTRINSICS MODULE

Output variable:

Error True iff the status is an error status.

The Error_Status code listing in § B.1.10 on page 223 contains additional documentation.

7.1.11 Get_Status_Output Procedure

The Get_Status_-Output procedure returns the output string from a status variable. It has an assignment
interface so that it may be called by assigning a Status_type variable to a character variable.

Calling syntax:

Status_String = S or
call Get (Status_String, S)

Input variable:

S The status to be examined.

Output variable:

Status_String Output string for this status variable.

The Get_Status_Output code listing in § B.1.11 on page 224 contains additional documentation.

7.1.12 Normal_Status Procedure

The Normal Status procedure returns true iff the status is a normal status — that is, iff the status severity
level is ‘normal’.

Calling syntax:
Logical = Normal(S)

Input variable:

S The status variable to be examined.

Output variable:

Normal True iff the status is a normal status.

The Normal Status code listing in § B.1.12 on page 224 contains additional documentation.

7.1.13 Set_Status Procedure

The Set_Status procedure assigns a value to a status variable. It has an assignment interface so that it may
be called by assigning a character variable to a Status_type variable.

Calling syntax:

7.1. STATUS CLASS 41

S = Selector_Flag or
call Set (S, Selector_Flag)

Input variable:

Selector_Flag String to select status flag. Possible values are: ‘Unset’, ‘Success’, ‘Multiple Er-
ror’, ‘Multiple Warning’, ‘Memory Warning’, ‘Memory Error’, ‘File Error’, ‘CGNS
Error’, ‘CGNS No Node’, ‘CGNS Bad Path’.
Output variable:

S The status, which is now set.

The Set_Status code listing in § B.1.13 on page 225 contains additional documentation.

7.1.14 Status_Equal Character Procedure

The Status_Equal_Character procedure returns a logical value which is true when the status variable is
the same state specified by the input character string, used as a selector flag (see Set_Status procedure in
section 7.1.13 for a list of valid flags). It has an operator (== or .eq.) interface.

Calling syntax:

Logical = S == or
Logical = Equal(S, C)

Input variable:
C The selector flag string to be compared.
S The status variable to be compared.
Output variable:

Equal True iff the status variable and the selector flag string match.

The Status_Equal_Character code listing in § B.1.14 on page 226 contains additional documentation.

7.1.15 Status_Equal_Status Procedure

The Status_Equal Status procedure returns a logical value which is true when the two status variable inputs
are equal (i.e. have the same state). It has an operator (== or .eq.) interface.

Calling syntax:

Logical = 81 == S2 or
Logical = Equal(S1, S2)

Input variable:

S1, S2 The status variables to be compared.

Output variable:

Equal True iff the two status variables have the same state.

42 CHAPTER 7. INTRINSICS MODULE

The Status_Equal Status code listing in § B.1.15 on page 226 contains additional documentation.

7.1.16 Status_Not_Equal_Character Procedure

The Status_Not_Equal _Character procedure returns a logical value which is true when the status variable is
not equal to the state specified by the input character string, used as a selector flag (see Set_Status procedure
in section 7.1.13 for a list of valid flags). It has an operator (/= or .ne.) interface.

Calling syntax:

Logical = S /= C or
Logical = Not_Equal(S, C)

Input variable:
C The selector flag string to be compared.
S The status variable to be compared.
Output variable:

Not_Equal True iff the two status variables have different states.

The Status_Not_Equal_Character code listing in § B.1.16 on page 227 contains additional documentation.

7.1.17 Status_Not_Equal_Status Procedure

The Status_Not_Equal Status procedure returns a logical value which is true when the two status variable
inputs are not equal (i.e. have different states). It has an operator (/= or .ne.) interface.

Calling syntax:

Logical = S1 /= S2 or
Logical = Not_Equal(S1, S2)

Input variable:

S1, S2 The status variables to be compared.

Output variable:

Not_Equal True iff the two status variables have different states.

The Status_Not_Equal_Status code listing in § B.1.17 on page 228 contains additional documentation.

7.1.18 Warning_Status Procedure
The Warning_Status procedure returns true iff the status is a warning status — that is, iff the status severity
level is ‘warning’.
Calling syntax:
Logical = Warning(S)

Input variable:

7.2. REAL CLASS 43

S The status variable to be examined.

Output variable:

Warning True iff the status is a warning status.

The Warning_Status code listing in § B.1.18 on page 228 contains additional documentation.

7.2 Real Class

The Real Class is used to describe a real scalar or array in the CESAR Code Package. The Real Class does
not use a user-defined type — it is the class for the F90 intrinsic type “real”.

Real public procedures:

Fundamental procedures

Initialize Initializes a real scalar or array variable.

Finalize Finalizes a real scalar or array variable.

Valid_State Returns false iff a real scalar or array variable is in an invalid state.
Operations

MaxVal Extends the F90 intrinsic procedure MaxVal to scalar arguments.
MinVal Extends the F90 intrinsic procedure MinVal to scalar arguments.
SUM Extends the F90 intrinsic procedure SUM to scalar arguments.
VeryClose Returns true if input values are almost equal.

The Real Class code listing in § B.2 on page 231 contains additional documentation. The Real Class also
contains a Unit Test Program which is listed in § B.2.8 on page 242.

7.2.1 Initialize Real Procedure

The Initialize Real procedure allocates and initializes a real scalar or array variable.
Calling syntax:
call Initialize (R, [diml, ..., dimn,] status)

Input variables:

R A real scalar variable or a pointer to an unallocated real array variable.
diml, ..., dimn Extents of the dimensions for the array R. Only as many dimensions as are needed
should be entered.

Output variables:

R The R variable has been allocated (if it is an array) and initialized to initialize_-
real _flag.
status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-

pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

44 CHAPTER 7. INTRINSICS MODULE

Internal variable:

allocate_status Allocation Status.

The Initialize Real code listing in § B.2.1 on page 232 contains additional documentation.

7.2.2 Finalize Real Procedure

The Finalize Real procedure deallocates and finalizes a real scalar or array variable.
Calling syntax:
call Finalize (R, status)

Input variable:

R A real scalar variable or a pointer to an allocated real array variable.

Output variables:

R The R variable has been deallocated and nullified, if it is an array, or set to a flag
value (finalize_real_flag), if it is a scalar.
status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-

pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variable:

deallocate_status Deallocation Status.

The Finalize Real code listing in § B.2.2 on page 234 contains additional documentation.

7.2.3 Valid_State_Real Procedure

The Valid_State_Real procedure returns true iff the real scalar or array variable is in a valid state — that is,
iff the variable passes all of the valid state tests.

Calling syntax:

Logical = Valid_State(R) or
Logical = Valid_State_NP(R)

Input variable:

R A real scalar variable or a pointer to an allocated real array variable. A non-
pointered variable may be used with the Valid_State_ NP version of the call.

Output variable:

Valid_State True iff the real scalar or array variable is in a valid state.

The Valid_State_Real code listing in § B.2.3 on page 236 contains additional documentation.

7.2. REAL CLASS 45

7.2.4 MaxVal _Real Scalar Procedure

The MaxVal Real Scalar procedure provides a function equivalent to the MaxVal() intrinsic function for real
scalars. It returns a value equal to the input value.

Calling syntax:
Real = MaxVal(R)

Input variable:

R Input real scalar variable.

Output variable:

MaxVal MaxVal is equal to R.

The MaxVal Real_Scalar code listing in § B.2.4 on page 240 contains additional documentation.

7.2.5 MinVal_Real_Scalar Procedure

The MinVal Real Scalar procedure provides a function equivalent to the MinVal() intrinsic function for real
scalars. It returns a value equal to the input value.

Calling syntax:
Real = MinVal(R)

Input variable:

R Input real scalar variable.

Output variable:

MinVal MinVal is equal to R.

The MinVal Real_Scalar code listing in § B.2.5 on page 240 contains additional documentation.

7.2.6 SUM_Real_Scalar Procedure

The SUM _Real Scalar procedure provides a function equivalent to the SUM() intrinsic function for real
scalars. It returns a value equal to the input value.

Calling syntax:
Real = SUM(R)

Input variable:

R Input real scalar variable.

Output variable:

SUM SUM is equal to R.

46 CHAPTER 7. INTRINSICS MODULE

The SUM_Real_Scalar code listing in § B.2.6 on page 241 contains additional documentation.

7.2.7 VeryClose_Real Procedure

The VeryClose procedure provides a way to check whether or not two variables are “Very Close” to each
other. The definition of “Very CLose” that is used is “within 10 times the internumeral spacing distance in
the vicinity of the numbers”. This test should be used instead of equality tests for reals. For array-valued
X and Y, all the values must satisfy the condition for the result to be true.

Note that I would rather call this routine “Very_Close”, but the F90 standard does not allow underscores in
defined operator names (i.e. “.Very_Close.” is not allowed).

Calling syntax:

Logical = X .VeryClose. Y ,
Logical = VeryClose(X, Y) or Input variables:

X, Y Input real, scalar or array variables to test.

Output variable:
VeryClose Logical which is true if X and Y are within 10 times the spacing distance between

variables at (X+Y)/2.

The VeryClose Real code listing in § B.2.7 on page 241 contains additional documentation.

7.3 Integer Class

The Integer Class is used to describe an integer scalar or array in the CESAR Code Package. The Integer
Class does not use a user-defined type — it is the class for the F90 intrinsic type “integer”.

Integer public procedures:

Fundamental procedures

Initialize Initializes an integer scalar or array variable.

Finalize Finalizes an integer scalar or array variable.

Valid_State Returns false iff an integer scalar or array variable is in an invalid state.
Operations

MaxVal Extends the F90 intrinsic procedure MaxVal to scalar arguments.
MinVal Extends the F90 intrinsic procedure MinVal to scalar arguments.

SUM Extends the F90 intrinsic procedure SUM to scalar arguments.

The Integer Class code listing in § B.3 on page 244 contains additional documentation. The Integer Class
also contains a Unit Test Program which is listed in § B.3.7 on page 252.

7.3.1 Initialize Integer Procedure

The Initialize Integer procedure allocates and initializes an integer scalar or array variable.

Calling syntax:

7.3. INTEGER CLASS 47
call Initialize (I, [diml, ..., dimn,] status)
Input variables:
I An integer scalar variable or a pointer to an unallocated integer array variable.

diml, ..., dimn Extents of the dimensions for the array I. Only as many dimensions as are needed
should be entered.

Output variables:

I The I variable has been allocated (if it is an array) and initialized to initialize_-
integer_flag.
status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-

pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variable:

allocate_status Allocation Status.

The Initialize Integer code listing in § B.3.1 on page 245 contains additional documentation.

7.3.2 Finalize Integer Procedure

The Finalize Integer procedure deallocates and finalizes an integer scalar or array variable.
Calling syntax:
call Finalize (I, status)

Input variable:

I An integer scalar variable or a pointer to an allocated integer array variable.

Output variable:

I The I variable has been deallocated and nullified, if it is an array, or set to a flag
value (finalize_integer_flag), if it is a scalar.
status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-

pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variable:

deallocate_status Deallocation Status.

The Finalize Integer code listing in § B.3.2 on page 247 contains additional documentation.

48 CHAPTER 7. INTRINSICS MODULE

7.3.3 Valid_State_Integer Procedure

The Valid_State_Integer procedure returns true iff the integer scalar or array variable is in a valid state —
that is, iff the variable passes all of the valid state tests.

Calling syntax:

Logical = Valid_State(I) or
Logical = Valid_State_NP(I)

Input variable:
I An integer scalar variable or a pointer to an allocated integer array variable. A
non-pointered variable may be used with the Valid_State_NP version of the call.
Output variable:

Valid_State True iff the integer scalar or array variable is in a valid state.

The Valid_State_Integer code listing in § B.3.3 on page 249 contains additional documentation.

7.3.4 MaxVal Integer_Scalar Procedure

The MaxVal Integer_Scalar procedure provides a function equivalent to the MaxVal() intrinsic function for
integer scalars. It returns a value equal to the input value.

Calling syntax:
Integer = MaxVal(I)

Input variable:

I Input integer scalar variable.

Output variable:

MaxVal MaxVal is equal to L.

The MaxVal Integer_Scalar code listing in § B.3.4 on page 250 contains additional documentation.

7.3.5 MinVal Integer_Scalar Procedure

The MinVal Integer_Scalar procedure provides a function equivalent to the MinVal() intrinsic function for
integer scalars. It returns a value equal to the input value.
Calling syntax:

Integer = MinVal(I)

Input variable:

I Input integer scalar variable.

Output variable:

7.4. LOGICAL CLASS 49

MinVal MinVal is equal to L.

The MinVal Integer_Scalar code listing in § B.3.5 on page 251 contains additional documentation.

7.3.6 SUM _Integer_Scalar Procedure

The SUM Integer_Scalar procedure provides a function equivalent to the SUM() intrinsic function for integer
scalars. It returns a value equal to the input value.

Calling syntax:
Integer = SUM(I)

Input variable:

I Input integer scalar variable.

Output variable:

SUM SUM is equal to 1.

The SUM _Integer_Scalar code listing in § B.3.6 on page 251 contains additional documentation.

7.4 Logical Class

The Logical Class is used to describe a logical scalar or array in the CESAR Code Package. The Logical
Class does not use a user-defined type — it is the class for the F90 intrinsic type “logical”.

Logical public procedures:

Fundamental procedures

Initialize Initializes a logical scalar or array variable.

Finalize Finalizes a logical scalar or array variable.

Valid_State Returns false iff a logical scalar or array variable is in an invalid state.
Operations

ALL Extends the F90 intrinsic procedure ALL to scalar arguments.
ANY Extends the F90 intrinsic procedure ANY to scalar arguments.
COUNT Extends the F90 intrinsic procedure COUNT to scalar arguments.
InInterval Returns true iff the argument is in the specified interval.

InSet Returns true iff the argument is in the specified set.
NotInInterval Returns true iff the argument is not in the specified interval.
NotInSet Returns true iff the argument is not in the specified set.

The Logical Class code listing in § B.4 on page 254 contains additional documentation. The Logical Class
also contains a Unit Test Program which is listed in § B.4.11 on page 266.

7.4.1 Initialize Logical Procedure

The Initialize Logical procedure allocates and initializes a logical scalar or array variable.

50 CHAPTER 7. INTRINSICS MODULE

Calling syntax:
call Initialize (L, [diml, ..., dimn,] status)
Input variables:
L A logical scalar variable or a pointer to an unallocated logical array variable.

diml, ..., dimn Extents of the dimensions for the array L. Only as many dimensions as are needed
should be entered.

Output variables:

L The L variable has been allocated (if it is an array) and initialized to initialize_-
logical_flag.
status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-

pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variable:

allocate_status Allocation Status.

The Initialize Logical code listing in § B.4.1 on page 256 contains additional documentation.

7.4.2 Finalize Logical Procedure

The Finalize Logical procedure deallocates and finalizes a logical scalar or array variable.
Calling syntax:
call Finalize (L, status)

Input variable:

L A logical scalar variable or a pointer to an allocated logical array variable.

Output variable:

L The L variable has been deallocated and nullified, if it is an array, or set to a flag
value (finalize_logical_flag), if it is a scalar.
status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-

pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variable:

deallocate_status Deallocation Status.

The Finalize Logical code listing in § B.4.2 on page 258 contains additional documentation.

7.4. LOGICAL CLASS 51

7.4.3 Valid_State_Logical Procedure

The Valid_State_Logical procedure returns true iff the logical scalar or array variable is in a valid state —
that is, iff the variable passes all of the valid state tests.

Calling syntax:

Logical = Valid_State(L) or
Logical = Valid_State_NP(L)

Input variable:
L A logical scalar variable or a pointer to an allocated logical array variable. A non-
pointered variable may be used with the Valid_State_NP version of the call.
Output variable:

Valid_State True iff the logical scalar or array variable is in a valid state.

The Valid_State_Logical code listing in § B.4.3 on page 259 contains additional documentation.

7.4.4 ALL_Scalar Procedure

The ALL_Scalar procedure provides a function equivalent to the ALL() intrinsic function for logical scalars.
It returns true iff its input is true.

Calling syntax:
Logical = ALL(L)

Input variable:

L Input logical scalar variable.

Output variable:

ALL ALL is true iff L is true.

The ALL_Scalar code listing in § B.4.4 on page 260 contains additional documentation.

7.4.5 ANY_Scalar Procedure

The ANY _Scalar procedure provides a function equivalent to the ANY() intrinsic function for logical scalars.
It returns true iff its input is true.

Calling syntax:
Logical = ANY(L)

Input variable:

L Input logical scalar variable.

Output variable:

52 CHAPTER 7. INTRINSICS MODULE

ANY ANY is true iff L is true.

The ANY _Scalar code listing in § B.4.5 on page 261 contains additional documentation.

7.4.6 COUNT_Scalar Procedure

The COUNT _Scalar procedure provides a function equivalent to the COUNTY() intrinsic function for logical
scalars. It returns the number of trues in the input, so it is 1 if the input scalar is true and 0 if the input
scalar is false.

Calling syntax:
Integer = COUNT(L)

Input variable:

L Input logical scalar variable.

Output variable:

COUNT_Scalar Set to the number of trues in the input (either 0 or 1).

The COUNT _Scalar code listing in § B.4.6 on page 261 contains additional documentation.

7.4.7 InInterval Procedure

The InInterval procedure provides a way to check whether or not a value lies within a specified interval. The
interval is considered to be a closed interval that includes the end-points. For an array-valued X, all the
values must satisfy the condition for the result to be true.

Note that I would rather call this routine “In_Interval”, but the F90 standard does not allow underscores in
defined operator names (i.e. “.In_Interval.” is not allowed).

Calling syntax:

Logical = X .InInterval. (/Intl, Int2/) ,
Logical = X .InInterval. Interval or
Logical = InInterval(X, Interval)

Input variables:

X Input integer or real, scalar or array variable.
Interval A vector of length 2 that specifies the extents of the interval to be checked.
(/Int1l, Int2/) A means of expressing an interval without declaring a vector.

Output variable:

InInterval Logical which is true if X is in the closed interval, which includes the end-points.

The InInterval code listing in § B.4.7 on page 262 contains additional documentation.

7.4. LOGICAL CLASS 53

7.4.8 InSet Procedure

The InSet procedure provides a way to check whether or not a value lies within a specified set.

Note that I would rather call this routine “In_Set”, but the F90 standard does not allow underscores in
defined operator names (i.e. “.In_Set.” is not allowed).

Calling syntax:

Logical = X .InSet. (/Eleml, Elem2, .../) ,
Logical = X .InSet. Set or
Logical = InSet(X, Set)

Input variables:

X Input integer, real or character scalar variable.
Set A vector containing the elements of the set to be checked.
(/Eleml, Elem2, .../) A means of expressing a set without declaring a vector.

Output variable:

InSet Logical which is true if X is an element of the set.

The InSet code listing in § B.4.8 on page 263 contains additional documentation.

7.4.9 NotInInterval Procedure

The NotInInterval procedure provides a way to check whether or not a value lies outside of a specified
interval. The interval is considered to be a closed interval that includes the end-points. For an array-valued
X, all the values must satisfy the condition for the result to be true.

Note that I would rather call this routine “Not_In_Interval”, but the F90 standard does not allow underscores
in defined operator names (i.e. “.Not_In_Interval.” is not allowed).

Calling syntax:

Logical = X .NotInInterval. (/Intl, Int2/) ,
Logical = X .NotInInterval. Interval or
Logical = NotInInterval(X, Interval)

Input variables:

X Input integer or real, scalar or array variable.
Interval A vector of length 2 that specifies the extents of the interval to be checked.
(/Int1l, Int2/) A means of expressing an interval without declaring a vector.

Output variable:

NotInInterval Logical which is true if X is in the closed interval, which includes the end-points.

The NotInInterval code listing in § B.4.9 on page 264 contains additional documentation.

54 CHAPTER 7. INTRINSICS MODULE

7.4.10 NotInSet Procedure

The NotInSet procedure provides a way to check whether or not a value lies within a specified set.

Note that I would rather call this routine “Not_In_Set”, but the F90 standard does not allow underscores in
defined operator names (i.e. “.Not_In_Set.” is not allowed).

Calling syntax:

Logical = X .NotInSet. (/Eleml, Elem2, .../) ,
Logical = X .NotInSet. Set or
Logical = NotInSet(X, Set)

Input variables:

X Input integer, real or character scalar variable.
Set A vector containing the elements of the set to be checked.
(/Eleml, Elem2, .../) A means of expressing a set without declaring a vector.

Output variable:

NotInSet Logical which is true if X is not an element of the set.

The NotInSet code listing in § B.4.10 on page 265 contains additional documentation.

7.5 Character Class

The Character Class is used to describe a character scalar or array in the CESAR Code Package. The
Character Class does not use a user-defined type — it is the class for the F90 intrinsic type “character”.

Character public procedures:

Fundamental procedures

Initialize Initializes a character scalar or array variable.
Finalize Finalizes a character scalar or array variable.
Valid_State Returns false iff a character scalar or array variable is in an invalid state.

The Character Class code listing in § B.5 on page 267 contains additional documentation. The Character
Class also contains a Unit Test Program which is listed in § B.5.4 on page 273.

7.5.1 Initialize_Character Procedure

The Initialize_ Character procedure allocates and initializes a character scalar or array variable.
Calling syntax:
call Initialize (C, [diml, ..., dimn,] status)
Input variables:
C A character scalar variable or a pointer to an unallocated character array variable.

diml, ..., dimn Extents of the dimensions for the array C. Only as many dimensions as are needed
should be entered.

7.5. CHARACTER CLASS

Output variables:

c The C variable has been allocated (if it is an array) and initialized to initialize_-
character_flag.
status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-

pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variable:

allocate_status Allocation Status.

The Initialize_Character code listing in § B.5.1 on page 268 contains additional documentation.

7.5.2 Finalize_Character Procedure

The Finalize_Character procedure deallocates and finalizes a character scalar or array variable.
Calling syntax:
call Finalize (C, status)

Input variable:

C A character scalar variable or a pointer to an allocated character array variable.

Output variable:

C The C variable has been deallocated and nullified, if it is an array, or set to a flag
value (finalize_character_flag), if it is a scalar.
status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-

pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

deallocate_status Deallocation Status.

The Finalize_Character code listing in § B.5.2 on page 270 contains additional documentation.

7.5.3 Valid_State_Character Procedure

55

The Valid_State_Character procedure returns true iff the character scalar or array variable is in a valid state

— that is, iff the variable passes all of the valid state tests.
Calling syntax:

Logical = Valid_State(C) or
Logical = Valid_State_NP(C)

Input variable:

56 CHAPTER 7. INTRINSICS MODULE

C A character scalar variable or a pointer to an allocated character array variable. A
non-pointered variable may be used with the Valid State NP version of the call.

Output variable:

Valid_State True iff the character scalar or array variable is in a valid state.

The Valid_State_Character code listing in § B.5.3 on page 272 contains additional documentation.

Chapter 8

Utilities Module

Robin: Where’d you get a live fish, Batman?
Batman: The true crimefighter always carries everything he needs in his utility belt, Robin.

There are some procedures in CESAR that do not belong to a particular class, yet are still generally useful.
It does not make sense to develop a class around these procedures unless one wishes to be pedantic about
object-oriented programming, so they are collected in the Utilities Module.

They are grouped by function, with three of the groups, Shell Utils, File Utils and Text_Utils, based on
duplicating the Gnu shell functions in Fortran95 code. As of April 4, 2003, these three Gnu shell function
groupings were combined into a package called Core_Utils, but they will continue to be grouped separately
here.

The Utilities Module code listing in § C on page 275 contains additional documentation.

8.1 F2003_Utils Module

The F2003_Utils Module provides intrinsic procedures that conform to the Fortran 2003 standard®. The
procedures provided are similar, but may not behave exactly the same as the F2003 versions. These functions
should be replaced by F2003 calls as compilers become available.

F2003_Utils public procedures:

Command_Argument_Count Returns the number of arguments on the command line.
Get_Command_Argument Returns a particular argument number from the command line.

The F2003_Utils Module code listing in § C.1 on page 275 contains additional documentation. The F2003_-
Utils Module also contains a Unit Test Program which is listed in § C.1.3 on page 278.

8.1.1 Command_Argument_Count_F2003 Procedure

The Command_Argument_Count_F2003 returns the number of command-line arguments used for this invo-
cation of the executable. It is modeled after the Fortran 2003 function so that it can be replaced by that
function eventually.

Calling syntax:

lhttp://j3-fortran.org/

57

58 CHAPTER 8. UTILITIES MODULE

Integer = COMMAND_ARGUMENT_COUNT ()
(This is capitalized because it is an intrinsic in Fortran 2003.)

Output variable:

Command_Argument_Count Returns the number of command arguments.

The Command_Argument_Count_F2003 code listing in § C.1.1 on page 276 contains additional documenta-
tion.

8.1.2 Get_Command_Argument_F2003 Procedure

The Get_Command_Argument_F2003 procedure returns a particular command-line argument used for this
invocation of the executable. It is modeled after the Fortran 2003 function so that it can be replaced by that
function eventually.

Calling syntax:
call GET_COMMAND_ARGUMENT (Number, Argument)
(This is capitalized because it is an intrinsic in Fortran 2003.)

Input variables:

Number The number of the argument to be queried.

Output variable:

Argument The character value of the argument.

The Get_Command_Argument_F2003 code listing in § C.1.2 on page 277 contains additional documentation.

8.2 Shell Utils Module

The Shell_Utils Module provides utility routines that mimic those found in the Gnu shell-utils package for
use inside Fortran routines. The routines provided are similar, but may not behave exactly the same as the
Gnu versions.

Candidates for inclusion in this module (i.e., the utilities in the Gnu version) are: basename, chroot, date,
dirname, echo, env, expr, factor, false, groups, hostname, id, logname, nice, nohup, pathchk, printenv, printf,
pwd, seq, sleep, stty, su, tee, test, true, tty, uname, users, who, whoami, and yes.

Shell_Utils public procedures:

Basename Removes the path prefix and optionally the suffix from a given pathname.
Dirname Strips off the filename or last level and returns only the directory name from a given
pathname.

The Shell _Utils Module code listing in § C.2 on page 278 contains additional documentation. The Shell Utils
Module also contains a Unit Test Program which is listed in § C.2.3 on page 281.

8.2. SHELL_UTILS MODULE 59

8.2.1 Basename_Shell Utils Procedure

The Basename Shell Utils procedure strips off the path prefix and optionally the suffix from a given path-
name. Note that the suffix behavior is slightly different from the standard basename function.

Calling syntax:
Character = Basename(Filename, Suffix)

Input variables:

Filename The Filename to be modified.

Suffix_Strip Toggle for removing suffix. Default is true. [Optional]
Output variable:

Basename The Filename with any leadin pathname and (optionally) any suffix stripped off.

Internal variables:

basename_left Leftmost character of stripped name.
basename_right Rightmost character of stripped name.

The Basename _Shell _Utils code listing in § C.2.1 on page 279 contains additional documentation.

8.2.2 Dirname_Shell Utils Procedure

The Dirname_Shell _Utils procedure strips off the filename and returns only the directory name from a given
pathname.

Calling syntax:
Character = Dirname(Filename)

Input variables:

Filename The Filename to be modified.

Output variable:

Dirname The directory part of the input Filename. Note that ’.” is returned if there is no
directory part.

Internal variables:

dirname_right Rightmost character of directory name.

The Dirname_Shell Utils code listing in § C.2.2 on page 281 contains additional documentation.

60 CHAPTER 8. UTILITIES MODULE

8.3 Text Utils Module

Change changing places

Root yourself to the ground
Capitalize on this good fortune
One word can bring you round
Changes

— Yes, 90125, “Changes”

The Text_Utils Module provides utility routines that mimic those found in the Gnu text-utils package for
use inside Fortran routines. The routines provided are similar, but may not behave exactly the same as the
Gnu versions. The Text_Utils Module also provides various other functions to manipulate text.

Candidates for inclusion in this module (i.e., the utilities in the Gnu version) are: cat, cksum, comm, csplit,
cut, expand, fmt, fold, head, join, md5sum, nl, od, paste, ptx, pr, sort, split, sum, tac, tail, tr, tsort,
unexpand, uniq, and wc.

Text_Utils public procedures:

Capitalize Converts a string to lowercase with uppercase at the beginning of words.
Lowercase Converts a string to all lowercase.
Uppercase Converts a string to all uppercase.

The Text_Utils Module code listing in § C.3 on page 283 contains additional documentation. The Text_Utils
Module also contains a Unit Test Program which is listed in § C.3.4 on page 287.

8.3.1 Capitalize Text_Utils Procedure

The Capitalize Text_Utils procedure returns a capitalized version of the input string. That is, the string is
all in lowercase except for the first letter of every word, which is uppercase. Words are defined as contiguous
strings of letters, and all non-letter characters define word boundaries.

Calling syntax:
Character = Capitalize(String)

Input variables:

String The String to be capitalized.

Output variable:

Capitalize The capitalized version of the input String.

The Capitalize_Text_Utils code listing in § C.3.1 on page 284 contains additional documentation.

8.3.2 Lowercase_Text_Utils Procedure

The Lowercase Text_Utils procedure returns a lowercased version of the input string.
Calling syntax:

Character = Lowercase(String)

8.3. TEXT_UTILS MODULE

Input variables:

String The String to be lowercased.

Output variable:

Lowercase The lowercase version of the input String.

The Lowercase_Text_Utils code listing in § C.3.2 on page 285 contains additional documentation.

8.3.3 Uppercase_Text_Utils Procedure

The Uppercase_Text_Utils procedure returns an uppercased version of the input string.
Calling syntax:
Character = Uppercase(String)

Input variables:

String The String to be uppercased.

Output variable:

Uppercase The uppercase version of the input String.

The Uppercase_Text_Utils code listing in § C.3.3 on page 286 contains additional documentation.

61

62

CHAPTER 8. UTILITIES MODULE

Chapter 9

Data_Structures Module

Get your data structures correct first, and the rest of the program will write itself. — David Jones
The secret of life is data structures. — Elizabeth Schwarzin

Data structures are important. Programs with less than optimal data structures experience problems reach-
ing their full potential, and programs with poor data structures can fail completely. Parallel data structures
are even more important, and even more complex. Ideally, this complexity should be hidden from the casual
user.

The Data_Structures Module implements the fundamental parallel data structures in the C&SAR Code
Package, and addresses the following issues:

e Input/Output on a single processor

e Data distribution over all the PEs

Indirect addressing — gather/scatters

Encapsulation — hiding the tricky operations

Data access and storage

User-specified base structures

Memory/communication time trade-offs

The rest of this section explains how this is accomplished.
Communication and Trace Classes

First, all of the low-level communication calls in CESAR are wrapped by the Communication Class (described
in § 9.2 on page 73). These calls currently use the PGSLib Package (described in § 2.2.2 on page 8), but
they could be rewritten to use UPS or even bare calls from the MPI Package (described in § 2.2.1 on page
8). The Communication Class also includes a serial version. Another data structure auxiliary type, which
contains the information associated with a gather-scatter operation, is the Trace Class (described in § 9.1
on page 69).

Strategy
Every data structure in the Data Structures Module can be thought of as a multi-dimensional array, with

one dimension spread across the processors. The dimension that is spread across the processors is referred

63

64 CHAPTER 9. DATA_STRUCTURES MODULE

Figure 9.1: A Schematic Diagram of the Assembled Vector data structure. The data has been assembled on
the I0 PE.

to as the distributed (or parallel) dimension (or axis). ! The remaining serial axes are contained on a given
processor, and are treated like standard Fortran 95 arrays. In the rest of this discussion the serial axes will
be ignored and arrays will be described as vectors, with the understanding that a “vector” may actually have
several serial axes in addition to its single parallel or distributed axis. Note also that the PEs are assumed
to contain contiguous pieces of the vector, with the first section being on PE=1, the second section being on
PE=2, etc.

Base_Structure Class

Information about the basic distribution of an axis across the PEs is contained in the Base _Structure Class
(described in § 9.3 on page 79). This information includes items such as the total length of the vector, the
length of the vector on this PE, the starting and ending indices for this PE, and the locus (or name) for
the axis. For example, a user might specify a Base Structure for the nodes in a mesh (locus = ‘Nodes’),
another one for the cells, and another one for the faces. Or equivalently, Base Structures could be defined
for equations or variables. The actual locus is not specified by the Data_Structures Module, so the user may
easily define new ones as needed.

Assembled_Vector Class

The simplest C&SAR data structure, the Assembled_Vector Class (described in § 9.5 on page 88), is not
parallel at all, but exists only on a single processor (see Figure 9.1). These vectors can be thought of as
parallel data structures that have been “assembled” on a single PE (the IO processor). The primary use
for an Assembled Vector is input and output, although there may certainly be times when a given parallel
data structure is too large to be assembled on the IO PE. An Assembled Vector contains a pointer to a Base
Structure which determines its structure.

Distributed_Vector Class

The basic parallel data structure is defined by the Distributed_Vector Class (described in § 9.6 on page
94). A Distributed Vector is a true parallel data structure, with data spread across the processors according
to its Base Structure, a different amount on each PE (see Figure 9.2). A Distributed Vector contains a
pointer to a Base Structure which determines its structure. The conversions between Assembled Vectors

IThis is a similar idea to the distribution specified by a CMF array with a layout containing a single :NEWS (parallel) axis
(CM Fortran Reference Manual, 1989).

65

Length_PE

¢

Figure 9.2: A Schematic Diagram of the Distributed Vector data structure. The data has been distributed
to all of the PEs, a different amount on each one.

and Distributed Vectors (based on the same Base Structure) can be accomplished with an equals sign (via
operator overloading). The operation changing a Distributed Vector to an Assembled Vector is known as
assemble; the opposite operation is called distribute.

Assembled and Distributed Vectors, and the Base Structures that they are based upon, satisfy the in-
put/output and parallel distribution needs of CZSAR. There is also a need for the association of two
different distributions. This is used to define, for example, the nodes that correspond to each cell in a mesh.
The association between two data distributions can also be thought of as indirection, which is very useful
for unstructured mesh operations (or parallel distributed mesh operations).

Data_Index Class

Association between two Base Structures in CESAR is accomplished via the Data_Index Class (described in
§ 9.4 on page 83). This association is considered to be a many-of-one relationship — “many” entries in the
first Base Structure correspond to “one” entry in the second Base Structure. For example, many nodes in
a node Base Structure correspond to each cell in a cell Base Structure. A Data Index therefore contains a
Many (Base) Structure, a One (Base) Structure, and an index array to relate the two. It also stores some
information about the communication pattern necessary to gather the “many” entries for each “one” entry
on the one axis.

Note that “many” need not be more than unity — for instance there could be one boundary face for each

regular face. In this case, the index array would be one-dimensional. If “many” is a constant number (for
instance, there are always six faces on each cell), then the index array is a two-dimensional array (in this
example, six by the number of cells on each PE). If “many” is a variable number (for instance, a polyhedral
mesh where the number of faces per cell may vary), then a ragged-right index array is used. Ragged-right
index arrays are not yet implemented, but one- and two-dimensional arrays are.

Overlapped_Vector Class

The Overlapped_Vector Class (described in § 9.7 on page 100) defines a data structure that represents an
intermediate step in performing a gather and collect operation. The data in an Overlapped Vector has
been gathered from a Distributed Vector with a Many Structure according to a specified One Structure, but
has not been collected into place. An Overlapped Vector contains a Many (Base) Structure, a One (Base)
Structure, a Many-of-One (Data) Index, and a Distributed Vector with a Many Structure (see Figure 9.3). It

66 CHAPTER 9. DATA_STRUCTURES MODULE

=> '""Many" Structure

=» "One" Structure

=> '"Many of One'' Index

=> ""Many" Distributed
Vector (shown above) |

' =» "One'"" Structure . '=» "One" Structure

' =» "Many of One'' Index > ""Many of One' Index
'=» "Many" Distributed | '=» '""Many" Distributed

i Vector (shown above) | } Vector (shown above)

|
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

' =» "Many" Structure ' = "Many" Structure |

Figure 9.3: A Schematic Diagram of the Overlapped Vector data structure. The green blocks represent
the Distributed Vector that the Overlapped Vector includes. The blue blocks represent off-processor data
necessary for a gather operation that has been stored locally — the overlapped part of the vector.

also contains the entries from the Distributed Vector that would be needed for a gather and collect operation
that are not local, and so some data is represented multiple times — but no more than once on a given PE.
This overlapped data can represent the data from the boundary of a given processor that does not reside
locally in the Distributed Vector. For example, an Overlapped Vector can contain the coordinates for all the
nodes that correspond to cells on a given processor, even though some of the nodes on the boundary actually
reside on other processors. Since it does not store the nodes twice on a given processor (even if more than
one cell on that processor contains a specific node), the Overlapped Vector data structure uses a smaller
amount of memory (compared to a Collected Array, which is described in the next subsection). Since it does
not require interprocessor communication to generate the collected form of the data, an Overlapped Vector
can save on run time (compared to gathering and collecting a Distributed Vector).

Collected_Array Class

The fully-evaluated “many-of-one” relationship between two distributions is described by the Collected. -
Array Class (described in § 9.8 on page 107). In contrast to the other CESAR data structures, the Collected
Array is an array rather than a vector (see Figure 9.4). It has two axes to represent the single parallel
axis that has been discussed so far (in addition to the many possible serial axes whose discussion is being
suppressed here). The vertical axis in Figure 9.4 is distributed across the processors according to the One
Structure. The horizontal axis of the Collected Array has been formed by collecting all of the “many” items
that correspond to each “one” (note that a Collected Array for a two-dimensional Many-of-One Index is
shown).

A Collected Array is the final result of a gather and collect operation on a Distributed Vector according
to a Many-of-One Index, or the result of simply collecting an Overlapped Vector (with no interprocessor
communication). The data in a Collected Array is in a very useable form, so that access requires little
run-time (as compared to collecting an Overlapped Vector or gathering and collecting a Distributed Vector).
The data in a Collected Array takes up much more memory than an Overlapped Vector, since “many” items

67

|

llOne|l
Length_PE

T

" "

Length_PE

=> ""Many" Structure
=> ""One" Structure
=> ""Many of One'' Index

=> "Many"' Structure
=» "One'" Structure
=> '"Many of One'' Index

=> '""Many" Structure
=> ""One" Structure
=> ""Many of One'' Index

\
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Figure 9.4: A Schematic Diagram of the Collected Array data structure. One way to form a Collected
Array is to collect all of the “many” entries that correspond to each entry on the “one” axis. The green
blocks represent data that was already on-processor when the data was distributed on the many axis in a
Distributed Vector. The blue blocks represent off-processor data that was gathered and collected onto the
one axis, which is the same as the blue overlapped blocks in an Overlapped Vector.

that belong to more than a single “one” item (for example, nodes belonging to more than one cell) are stored
multiply, even if they exist on the same processor. Sometimes this behavior is not only useful from a run-time
perspective, but is required — for instance, a physical property evaluated on each face of a cell may require
a different value for the same face in different cells due to different materials in the cells. The “many” axis
in a Collected Array can be combined using a specified combination operator to form a Distributed Vector
with a One Structure.

Bare Naked Vectors and Arrays

In contrast to the communication, the calculations using data from the data structures are done using
standard Fortran 95 arrays, pointered to allow dynamic memory allocation. This allows the compiler to make
any optimizations possible with the Fortran 95 intrinsic array syntax. For the purpose of this discussion, to
contrast these standard Fortran arrays with the other data structures described here, they are referred to as
Bare Naked Vectors and Bare Naked Arrays, meaning that there is no encumbering derived type associated
with them.

Summary

The CAESAR data structures are very useful in coordinating the necessary communication for a parallel
program. They provide a great deal of control over data layout, memory usage and cpu time, and enable
CESAR to optimize in one direction or another depending on available resources (see Table 9.1). All of the
complicated operations of converting from one data structure to another are hidden, and in fact can in most
cases be accomplished with a simple equals sign, via operator overloading.

An Example

As an example, take the problem of reading in node coordinates, calculating cell center values, and writing
them out. The steps to be taken are diagrammed in Figures 9.5 and 9.6. First, set-up information for the
nodes is read in, in the form of the total number of nodes and the number on each PE, and a Base Structure
for the nodes (referred to as the Node Structure) is initialized. A similar set up is done for the cells. Next,

68 CHAPTER 9. DATA_STRUCTURES MODULE

Table 9.1: Relative Data Structure Memory and CPU Requirements. Assuming that information is stored
in a Distributed Vector and needs to be accessed in a gathered and collected Bare Naked Array form, this
table shows the memory / cpu time trade-offs for various CESAR data structures.

Data Structure Memory Usage CPU Usage

Distributed Vector Lowest High, with communication
Overlapped Vector Low (same as DV + off-PE entries) Medium, no communication
Collected Array High Low, no communication

an index array that tells which nodes are associated with which cells is read, and a Data Index called the
Nodes of Cells Index is initialized using the index array and the Node and Cell Structures.

Now the necessary data structures can be easily initialized from the Node Structure, the Cell Structure, and
the Nodes of Cells Index. These are, using acronyms for the data structures (i.e. AV: Assembled Vector, DV:
Distributed Vector, OV: Overlapped Vector, CA: Collected Array, BNV: Bare Naked Vector, BNA: Bare
Naked Array):

Coordinates Nodes_ BNV (IO PE only),
Coordinates Nodes_AV,

Coordinates Nodes_DV,

Coordinates Nodes_of_Cells_ OV,
Coordinates Nodes_of_Cells_CA,
Centers_Cells DV,

Centers_Cells_AV, and
Centers_Cells BNV (IO PE only).

All of these data structures have a single serial axis in addition to the parallel axis, and it is dimensioned to
the number of spatial dimensions in the problem (3 for 3-D).

The node coordinates are now read into a Bare Naked Vector called Coordinates_Nodes_ BNV which is defined
on the IO PE only. To store the coordinates in the Assembled Vector, a simple equals sign is used:

Coordinates_Nodes_AV = Coordinates_Nodes_BNV
To distribute the values across the processors, use another equals sign:
Coordinates_Nodes_DV = Coordinates_Nodes_AV

To gather the distributed node values to their respective cells, so that all nodes are on the same processor
with their cells, in an Overlapped Vector, again use an equals sign:

Coordinates_Nodes_of_Cells_0V = Coordinates_Nodes_DV
To collect the node coordinates for each cell into an array, still an equals sign:
Coordinates_Nodes_of_Cells_CA = Coordinates_Nodes_of_Cells_0V

To calculate the cell center coordinates, combine the node coordinates for each cell using an “Average”
operator. In this case, a subroutine call must be used to specify the combination operator:?

call Combine_with_Average (Centers_Cells_DV, Coordinates_Nodes_of_Cells_CA)
To assemble the cell center coordinates on the IO PE, use an equals sign:
Centers_Cells_AV = Centers_Cells_DV
To access the cell center coordinates on the IO PE, use a final equals sign:
Centers_Cells_BNV = Centers_Cells_AV

And then the cell center coordinates may be written to a file, completing our example.

2 An equals sign could have been used if the combination operator had been a “SUM?”.

9.1. TRACE CLASS 69

If the DEBUG_LEVEL is set high enough, copious error checking will be done to make sure that the left
and right sides of the equals signs above are compatible.

Note that the solution given above is not unique. For example, to conserve memory, the Collected Array
need not be formed, and a direct step around it may be taken:

call Collect_and_Average (Centers_Cells_DV, Coordinates_Nodes_of_Cells_QOV)
Or, if the memory is available, the intermediate Overlapped Vector is superfluous and can be skipped:
Coordinates_Nodes_of_Cells_CA = Coordinates_Nodes_DV

Forming an Overlapped Vector does not use much more memory than the Distributed Vector it is based on,
and saves much communication time.

The Data_Structures Module code listing in § D on page 289 contains additional documentation.

9.1 Trace Class

The Trace Class is used to describe a communication trace in the CESAR Code Package. A communication
trace consists of the set-up information for a particular gather-scatter call.

Trace public procedures:

Fundamental procedures

Initialize Initializes a Trace object.

Finalize Finalizes a Trace object.

Valid_State Returns false iff a Trace object is in an invalid state.
Operations

Initialized Returns true iff a Trace object has been initialized.

Trace public defined type:

Trace type

Dimensionality The number of dimensions that the index has.

Index1l, Index2 The index values, which may be modified by the communications package.
Initialized Initialization status.

Trace The trace for the communication associated with the index.

The Trace Class code listing in § D.1 on page 290 contains additional documentation.

9.1.1 Imitialize_Trace Procedure

The Initialize_Trace procedure allocates and initializes a Trace object.
Calling syntax:
call Initialize (Trace, Index, Length_PE, status)

Input variables:

Trace The Trace object to be initialized.

Index The indirect index values for the specified communication pattern.

Length_PE Length of the destination vector on this PE. This corresponds to the Many axis of
a Many-to-One relationship.

70 CHAPTER 9. DATA_STRUCTURES MODULE

Assembled Vector
of "Nodes"
Distributc\\\\Assemble
Distributed Vector
of "Nodes"
Gaﬂh\
Overlapped Vector
of "Nodes of Cells"
ColleN
Collected Array
of "Nodes of Cells"
Combine
Distributed Vector
of "Cells"
Distribut%{ﬂssemble
Assembled Vector
of "Cells"

Figure 9.5: A flow chart showing the hierarchical relationships between CZESAR Data Structures. Operations
in red require global communication.

“UOTYeITUNTITO) [eqO[3 a1mbax pa1 ut suorjerad(

SSVIO HOVHL 'T'6

Assembled Vector — Access = Bare Naked Vector
of "Nodes" - Store of "Nodes" (One PE)
Distributwssemble
Distributed Vector Access - | Bare Naked Vector
of "Nodes" = Store of "Nodes"
GatheN\
Overlapped Vector Collect & Access

of "Nodes of Cells"

Gather COIICN Y
& Collect

™| Collected Array 2L | Bare Naked Array
Collect of "Nodes of Cells" | ~ store of "Nodes of Cells"
& Combine
Y Combine
Distributed Vector Access .| Bare Naked Vector
of "Cells" = Store of "Cells"
Distribut%{ﬂssemble
Assembled Vector Access | Bare Naked Vector
of "Cells" = Store of "Cells" (One PE)

"SOINJONI)G BYR(] UVSH () 10j pojuswd[dur usdq oAey jey) suoryersdo Surmoys jIeyd MOg V :9°¢ 9InSig

1

72 CHAPTER 9. DATA_STRUCTURES MODULE

Output variables:

Trace The Trace object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.

The Initialize Trace code listing in § D.1.1 on page 291 contains additional documentation.

9.1.2 Finalize_Trace Procedure

The Finalize_Trace procedure deallocates and finalizes a Trace object.
Calling syntax:
call Finalize (Trace, status)

Input variables:

Trace The Trace object to be finalized.

Output variables:

Trace The Trace object has been finalized and is no longer valid.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

consolidated_status Consolidated Status.
deallocate_status Deallocation Status vector.

The Finalize Trace code listing in § D.1.2 on page 293 contains additional documentation.

9.1.3 Valid_State_Trace Procedure

The Valid State_Trace procedure returns true iff the Trace is in a valid state — that is, iff the Trace passes
all of the valid state tests.
Calling syntax:

Logical = Valid_State(Trace)

Input variables:

Trace The Trace to be checked.

9.2. COMMUNICATION CLASS 73

Output variable:

Valid_State True iff the Trace is in a valid state.

The Valid _State_Trace code listing in § D.1.3 on page 295 contains additional documentation.

9.1.4 Initialized_Trace Procedure

The Initialized -Trace procedure returns true iff the Trace object has been initialized.
Calling syntax:
Logical = Initialized(Trace)

Input variable:

Trace The Trace object to be examined.

Output variable:

Initialized True iff the Trace object has been initialized.

The Initialized_Trace code listing in § D.1.4 on page 296 contains additional documentation.

9.2 Communication Class

The Communication Class is used to wrap the communication calls to other packages from the CESAR Code
Package. It also contains serial versions of the routines so that CESAR may be run without any external
packages on a serial platform.

Communication public procedures:

Fundamental procedures

Initialize Initializes communication.

Finalize Finalizes communication.

Valid_State Returns false iff the communication is in an invalid state.

Operations

Abort Stops execution on all processors.

Assemble Takes a variable that is distributed across all the processors and pulls it together
(assembles it) on the IO PE. This is the opposite of the Distribute procedure.

Broadcast Sets a variable on all the processors to a value on the 10 PE.

Distribute Takes a variable on the I0 PE and divides it up (distributes it) among all the
processors. This is the opposite of the Assemble procedure.

Gather Transforms one distributed variable into another distributed variable, according to

an indirection index. No collisions are possible, since this call is effectively pulling
values out of a distributed variable, and there is a different location for each pulled
value. This is the opposite of the Scatter procedure.

Global Reductions Global operations that require communication with all the processors, such as SUM,
ALL, etc.

Output Outputs information about the communication set-up.

Output_Test Outputs the result of a test.

Parallel _Write Outputs data that is distributed across the processors.

74 CHAPTER 9. DATA_STRUCTURES MODULE

Scatter_0P Transforms one distributed variable into another distributed variable, according to
an indirection index. Collisions are possible, since this call is effectively putting
values into a distributed variable, and more than one value can go into the same
location. Therefore, a combination operator, OP, must be specified. Allowed values
for OP are: AND, MAX, MIN, OR, or SUM. This is the opposite of the Gather procedure.

Communication public defined types:

Communication_type The Communication Class variable type.

Communication public variables:

delta_PE_IO_PE Kronecker delta (PE, IO_PE).

I0_PE The PE number which is allowed to do I/O.

NPEs Total number of PEs (1 for serial runs).

Parallel True for parallel runs, false for serial runs.

Parallel_Library The name of the parallel communication library.

Serial True for serial runs, false for parallel runs.

Scope Global scope for PGSLib — not really utilized yet.
this_is_IO0_PE True on any PE which is allowed to perform I/O operations.
this_is_not_IO0_PE True on any PE which is not allowed to perform I/O operations.
this_PE The PE number for this processor (in the range [1, NPEs]).

The Communication Class code listing in § D.2 on page 296 contains additional documentation. The Com-
munication Class also contains a Unit Test Program which is listed in § D.2.14 on page 321.

9.2.1 Imitialize_Communication Procedure

The Initialize_ Communication procedure sets up and initializes the communication scheme for the CESAR
Code Package. Once it has been called, the global communication variables are defined and available via use
association. This routine should be called whether or not a parallel run is being done.

Calling syntax:
call Initialize (Communication)

Input/Output variable:

Communication The Communication object to be initialized.

The Initialize Communication code listing in § D.2.1 on page 300 contains additional documentation.

9.2.2 Finalize_Communication Procedure

The Finalize_Communication procedure finalizes the communication scheme for the CESAR Code Package.
Calling syntax:
call Finalize (Communication, Output_Toggle)

Input variable:

Output_Toggle Toggles final output for this communication set-up. [Optional]

9.2. COMMUNICATION CLASS 75

Input/Output variable:

Communication The Communication object to be finalized.

The Finalize_ Communication code listing in § D.2.2 on page 301 contains additional documentation.

9.2.3 Valid_State_Communication Procedure

The Valid_State_Communication procedure returns true iff the communication is in a valid state — that is,
iff the communication passes all of the valid state tests.

Calling syntax:
Logical = Valid_State(Communication)

Input variable:

Communication The Communication object to be checked.

Output variable:

Valid_State True iff the communication is in a valid state.

The Valid_State_Communication code listing in § D.2.3 on page 303 contains additional documentation.

9.2.4 Abort Procedure
The Abort Procedure stops program execution. In parallel mode, Abort should stop execution on all pro-
Cessors.
Calling syntax:
call Abort

The Abort code listing in § D.2.4 on page 304 contains additional documentation.

9.2.5 Assemble Procedure

The Assemble Procedure takes an input vector or scalar that is distributed across all the processors and
pulls it together (assembles it) on the IO processor. This is the opposite of the Distribute procedure.
Calling syntax:

call Assemble (Output, Input)

Input variable:
Input A real, integer, logical or character vector or scalar that is distributed across all the
processors and which is to be assembled on the IO processor.
Output variable:

Output The assembled version of the Input variable, existing only on the IO processor.

76 CHAPTER 9. DATA_STRUCTURES MODULE

The Assemble code listing in § D.2.5 on page 304 contains additional documentation.

9.2.6 Broadcast Procedure

The Broadcast Procedure takes an input value from the IO processor and sets the variable on all of the
processors equal to that value.
Calling syntax:

call Broadcast (Variable)

Input variable:
Variable A real, integer, logical or character vector that is defined on the IO processor and
which is to be broadcast over all of the processors.
Output variable:
Variable Every processor now has the same value for variable, equal to the input value on

the IO processor.

The Broadcast code listing in § D.2.6 on page 305 contains additional documentation.

9.2.7 Distribute Procedure
The Distribute Procedure takes an input vector from the IO processor and divides it up (distributes it)
across all of the processors. This is the opposite of the Assemble procedure.
Calling syntax:
call Distribute (Output, Input, Lengths)

Input variable:

Input A real, integer or logical vector that is defined on the IO processor and which is to
be distributed over all of the processors.
Lengths An integer vector of dimension NPEs containing the number of elements of the input

vector which are to be distributed to each PE. Lengths is only defined on the IO
PE. In the special case of one element to each processor, this vector must not be
included.

Output variable:

Output The distributed version of the Input vector, with a piece on every processor.

The Distribute code listing in § D.2.7 on page 306 contains additional documentation.

9.2.8 Gather Procedure

The Gather Procedure takes an input vector that is distributed across all the processors and gathers it into
another distributed vector or array according to an indirect index vector or array. No collisions are possible,
since this call is effectively pulling values out of a distributed variable, and there is a different location for

9.2. COMMUNICATION CLASS (s

each pulled value. This is the opposite of the Scatter procedure.
Calling syntax:
call Gather (Output, Input, Index, Trace)
Input variables:
Index An optional integer vector or array of indirect references to positions in the Input

vector. This must be included on the first call to this procedure with a given data
structure, but may be omitted on subsequent calls if the Trace variable is present.

[Optional]
Input A real, integer or logical vector that is distributed across all the processors.
Trace An optional structure that stores the setup from a previous Gather/Scatter call

using the same Index variable and Input vector length. If Trace is present and
uninitialized, it is set by this procedure. If Trace is present, it is used regardless of
whether Index is present. [Optional]

Output variables:
Output The gathered version of the Input vector, distributed across the processors.

Trace If present, Trace is set to the setup information for this Gather/Scatter. [Optional]

The Gather code listing in § D.2.8 on page 308 contains additional documentation.

9.2.9 Global Reduction Functions

The global reduction functions execute various global reductions on their input. Each global reduction
function corresponds to a Fortran 90 intrinsic function with the same name, minus the “Global” prefix.
These functions require global all-to-all communication and are relatively computationally expensive. If the
code is run in serial mode, then the global reduction functions are equivalent to the serial intrinsic functions.

Calling syntax:

Output = Global_ALL (Input) ,
Output = Global_ANY (Input) ,
Output = Global_MaxVal (Input) ,
Output = Global_MinVal (Input) ,
Output = Global_Sum (Input) or
Output = Global_Dot_Product (Inputl, Input2)

Input variables:

Input A real or integer (in the case of Sum, MinVal and MaxVal) or a logical (in the case
of ALL and ANY) scalar, vector or 2-D array that is defined on each processor and
which is to be reduced over all of the processors.

Inputl, Input2 The two real, integer or logical vectors that are defined on each processor and that
are to be reduced via a dot product over all of the processors.

Output variable:

Output The result of the global reduction.

The Global Reduction code listing in § D.2.9 on page 311 contains additional documentation.

78 CHAPTER 9. DATA_STRUCTURES MODULE

9.2.10 Output_Communication Procedure
The Output_Communication procedure writes out information about the communication set-up to the spec-
ified unit.
Calling syntax:
call Output (Communication, Unit)

Input variables:
Communication The Communication object to be output.

Unit The logical unit for output, which defaults to 6. [Optional]

The Output_Communication code listing in § D.2.10 on page 313 contains additional documentation.

9.2.11 Owutput_Test Procedure

The Output_Test procedure writes out the result of a test to the specified unit.
Calling syntax:
call Output_Test (Test_Name, Success, Unit)

Input variables:

Test_Name The name of the test that has been conducted.
Success The result status of the test.
Unit The logical unit for output, which defaults to 6. [Optional]

The Output_Test code listing in § D.2.11 on page 314 contains additional documentation.

9.2.12 Parallel Write Procedure

The Parallel Write Procedure takes an input character scalar or vector that is distributed across all the
processors and writes it to the specified unit number. If a specific PE number is specified, only the information
for that PE is written; otherwise, the information for all the PEs is written in order.

Calling syntax:
call Parallel_Write (String, Unit, PE)

Input variables:

String The character string (scalar or vector) to be written out, defined differently on each

processor.
PE The processor number containing the data to be output. If not present, data from
all of the processors will be output. [Optional]
Unit The unit number for output. If not present, unit 6 (stdout) will be used. [Optional]

The Parallel Write code listing in § D.2.12 on page 315 contains additional documentation.

9.3. BASE_STRUCTURE CLASS 79

9.2.13 Scatter Procedure

The Scatter Procedure takes an input vector (bare naked vector) that is distributed across all the processors
and scatters it into another distributed vector or array (bare naked vector or array) according to an indirect
index vector or array. Collisions are possible, since this call is effectively putting values into a distributed
variable, and more than one value can go into the same location. Therefore, a combination operator, OP,
must be specified. This is the opposite of the Gather procedure.

Calling syntax:

call Scatter_AND (Output, Input, Index, Trace) ,
call Scatter_MAX (Output, Input, Index, Trace) ,
call Scatter_MIN (Output, Input, Index, Trace) ,
call Scatter_OR (Output, Input, Index, Trace) or
call Scatter_SUM (Output, Input, Index, Trace)

Input variables:
Index An optional integer vector or array of indirect references to positions in the Output

vector. This must be included on the first call to this procedure with a given data
structure, but may be omitted on subsequent calls if the Trace variable is present.

[Optional]
Input A real, integer or logical vector that is distributed across all the processors.
Trace An optional structure that stores the setup from a previous Gather/Scatter call

using the same Index variable and Output vector length. If Trace is present and
uninitialized, it is set by this procedure. If Trace is present, it is used regardless of
whether Index is present. [Optional]

Output variables:
Output The scattered vector version of the Input vector, distributed across the processors.

Trace If present, Trace is set to the setup information for this Gather/Scatter. [Optional]

The Scatter code listing in § D.2.13 on page 318 contains additional documentation.

9.3 Base_Structure Class

The Base_Structure Class is used to describe a base structure in the CESAR Code Package. A Base_Structure
is part of the overall data structure strategy in C&ESAR, which is made up of the following classes: Base_-
Structure, Data_Index, Assembled_Vector, Distributed_Vector, Overlapped_Vector, and Collected_Array. A
description of the overall data structure strategy can be found in the Data_Structures Module (described in
chapter 9 on page 63).

Base_Structure public procedures:

Fundamental procedures

Initialize Initializes a Base Structure object.

Finalize Finalizes a Base_Structure object.

Valid_State Returns false iff a Base_Structure object is in an invalid state.
Initialized Returns true iff a Base_Structure object has been initialized.
Operations

First_PE Returns the first global index number on this PE.
Generate_Even_Distribution Returns an even distribution of items in a vector.

Last_PE Returns the last global index number on this PE.

80 CHAPTER 9. DATA_STRUCTURES MODULE

Length_PE Returns the length of the distributed axis on this PE.

Length_Total Returns the total the distributed axis of the entire vector (including all PEs).
Length_Vector Returns a vector containing the length of the distributed axis for each PE.
Locus Returns the locus of the Base_Structure object.

Output Writes out the Base_Structure object.

Range_PE Returns the range of global index numbers on this PE.

Base_Structure public variable:

name_length Length of the character strings for names.

Base_Structure public defined type:

Base_Structure type

First_PE First global index number for this PE.

Initialized Initialization status.

Last_PE Last global index number for this PE.

Length_Total Total length of the distributed axis of the entire vector (including all PEs).

Length_PE Length of the distributed axis on this PE.

Length_Vector A vector containing the length of the distributed axis for each PE.

Locus The location or variable name which is distributed over the processors (Cells, Nodes,
Faces, Equations, Variables, etc.).

Range_PE The range of global index numbers for this PE.

The Base_Structure Class code listing in § D.3 on page 322 contains additional documentation. The Base._-
Structure Class also contains a Unit Test Program which is listed in § D.3.8 on page 334.

9.3.1 Imitialize_Base_Structure Procedure

The Initialize_Base_Structure procedure allocates and initializes a Base_Structure object.
Calling syntax:
call Initialize (Structure, Length_Vector, Locus, status)

Input variables:

Structure The Base_Structure object to be initialized.
Length_Vector A vector containing the length of the distributed axis for each PE.
Locus The location or variable name which is distributed over the processors (Cells, Nodes,

Faces, Equations, Variables, etc.). [Optional]

Output variables:

Structure The Base_Structure object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.

9.3. BASE_STRUCTURE CLASS 81

The Initialize Base_Structure code listing in § D.3.1 on page 325 contains additional documentation.

9.3.2 Finalize_Base_Structure Procedure

The Finalize Base_Structure procedure deallocates and finalizes a Base_Structure object.
Calling syntax:
call Finalize (Structure, status)

Input variables:

Structure The Base_Structure object to be finalized.

Output variables:

Structure The Base_Structure object has been finalized and is no longer valid.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

consolidated_status Consolidated Status.
deallocate_status Deallocation Status vector.

The Finalize Base_Structure code listing in § D.3.2 on page 326 contains additional documentation.

9.3.3 Valid_State_Base_Structure Procedure

The Valid_State_Base_Structure procedure returns true iff the Base_Structure is in a valid state — that is, iff
the Base_Structure passes all of the valid state tests.

Calling syntax:
Logical = Valid_State(Structure)

Input variables:

Structure The Base_Structure to be checked.

Output variable:

Valid_State True iff the Base_Structure is in a valid state.

The Valid_State_Base_Structure code listing in § D.3.3 on page 327 contains additional documentation.

9.3.4 Initialized_Base_Structure Procedure

The Initialized Base_Structure procedure returns true iff the Base_Structure object has been initialized.

Calling syntax:

82 CHAPTER 9. DATA_STRUCTURES MODULE

Logical = Initialized(Structure)

Input variable:

Structure The Base_Structure object to be examined.

Output variable:

Initialized True iff the Base_Structure object has been initialized.

The Initialized Base_Structure code listing in § D.3.4 on page 328 contains additional documentation.

9.3.5 Generate_Even_Distribution Procedure

The Generate_Even_Distribution procedure sets a short vector (on the order of NPEs) to the most even
distribution of items possible, on every PE. It can be used to generate an even distribution for the Length -
Vector to initialize a Base_Structure object.

Calling syntax:
call Generate_Even_Distribution (Vector, NItems)

Input variable:

NItems The number of items to be distributed.

Output variable:

Vector The vector with an even distribution of items.

The Generate_Even_Distribution code listing in § D.3.5 on page 329 contains additional documentation.

9.3.6 Get Value Base_Structure Functions

The Get_Value_Structure functions return values from a Base Structure object.
Calling syntax:

Output = First_PE (Structure) ,
Output = Last_PE (Structure) ,
Output = Length_PE (Structure))
Output = Length_Total (Structure) ,
Output = Length_Vector (Structure) ,
Output = Locus (Structure) or
Output = Range_PE (Structure)

Input variables:

Structure The Base_Structure object to be examined.

Output variable:

9.4. DATA_INDEX CLASS 83

Output For Locus, returns a character variable containing the locus assigned to the object
upon initialization. For Range PE, returns a dimension(2) integer containing the
range of values on this PE. For Length_Vector, returns a dimension(NPEs) integer
containing the number of values on all PEs. For all other functions, returns an
integer variable with the named value for the Base_Structure object.

The Get Value Base_Structure code listing in § D.3.6 on page 330 contains additional documentation.

9.3.7 Output_Base_Structure Procedure

The Output_Base_Structure procedure writes out a Base Structure to the specified unit.
Calling syntax:
call Output (Structure, Unit, Type, Indent)

Input variables:

Structure The Base_Structure object to be queried.

Unit The logical unit for output, which defaults to 6. [Optional]
Type The structure type (e.g. Many, One). [Optional]

Indent Number of indentation characters. [Optional]

The Output_Base_Structure code listing in § D.3.7 on page 332 contains additional documentation.

9.4 Data Index Class

The Data_Index Class is used to describe a data index in the C&SAR Code Package. A Data_Index is part
of the overall data structure strategy in C&ESAR, which is made up of the following classes: Base_Structure,
Data_Index, Assembled_Vector, Distributed_Vector, Overlapped_Vector, and Collected_Array. A description
of the overall data structure strategy can be found in the Data_Structures Module (described in chapter 9
on page 63).

The form of a Data_Index object is given by:
Array (One_Axis [, Many_Axis])
or

Array (One_Axis [, Many_Axis_ragged_right])
--> not implemented

where One_Axis refers to the axis which is spread across the processors.

Data_Index public procedures:

Fundamental procedures

Initialize Initializes a Data_Index object.

Finalize Finalizes a Data_Index object.

Valid_State Returns false iff a Data_Index object is in an invalid state.

Initialized Returns true iff a Data_Index object has been initialized.

Operations

Get_Values Gets the values from a Data_Index object and returns them in a bare naked vector

(also has an assignment interface).

84 CHAPTER 9. DATA_STRUCTURES MODULE

Initialize_Shell_Partition Sets up the Base_Structure and Data_Index objects for a poor partitioning, used for
testing.
Output Writes out the Data_Index object.

Data_Index public defined type:

Data_Index type

Dimensionality The number of dimensions that the index has. “Ragged _Right” indices are signified
by a Dimensionality of -1, and are equivalent to a Dimensionality of 2 where the
number of columns per row varies. (Ragged _Right is not yet implemented.)

Index1, Index2 The index values, which are modified: 1. to reflect off-PE locations with a negative
number corresponding to the location in Off PE_Index of the original value; and 2.
to have a local numbering instead of a global numbering.

Initialized Initialization status.

Many_Structure Basic data structure corresponding to the columns in the index array. The index
array can be thought of as a “Many of One” relationship (e.g. Many Faces of Each
Cell, or Faces_of_Cells), with each row of the array signifying all the “Many” items
that correspond to that “One” row.

NOff_PE The number of Off-PE values.

0ff_PE_Index The values of the index which are not local to this PE.

0ff_PE_Trace The trace for the communication associated with the Off_PE_Index.
One_Structure Basic data structure corresponding to the rows in the index array. The index array

can be thought of as a “Many of One” relationship (e.g. Many Faces of Each Cell,
or Faces_of_Cells), with each row of the array signifying all the “Many” items that
correspond to that “One” row.

Trace The trace for the communication associated with the index.

The Data_Index Class code listing in § D.4 on page 335 contains additional documentation. The Data_Index
Class also contains a Unit Test Program which is listed in § D.4.9 on page 356.

9.4.1 Imitialize_Data_Index Procedure

The Initialize Data_Index procedure allocates and initializes a Data_Index object.
Calling syntax:
call Initialize (Index, Many_Structure, One_Structure, Many_of_One_Vector, Many_of_One_Array, Many_

Input variables:

Index The Data_Index object to be initialized.

Many_of_One_Array The index vector, giving indices for the "Many” that correspond with each ”One”.
Only the rows (”Ones”) for this PE are included. Zero entries signify the lack of a
reference. If this is specified, then Many_of One_Vector and Many_of One Ragged
should not be specified. [Optional]

Many_of_One_Ragged The index vector, giving indices for the "Many” that correspond with each ”One”.
Only the rows (”Ones”) for this PE are included. Zero entries signify the lack of
a reference. If this is specified, then Many_of One_Vector and Many_of One_Array
should not be specified. [Optional] - NOT IMPLEMENTED YET.

Many_of_One_Vector The index vector, giving indices for the "Many” that correspond with each ”One”.
Only the rows (”Ones”) for this PE are included. Zero entries signify the lack of
a reference. If this is specified, then Many_of_One_Array and Many_of_One_Ragged
should not be specified. [Optional]

Many_Structure A data structure that corresponds to the columns in the index array.

9.4. DATA_INDEX CLASS 85

One_Structure A data structure that corresponds to the rows in the index array.

Output variables:

Index The Data_Index object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.

The Initialize Data_Index code listing in § D.4.1 on page 338 contains additional documentation.

9.4.2 Finalize_Data_Index Procedure

The Finalize Data_Index procedure deallocates and finalizes a Data_Index object.
Calling syntax:
call Finalize (Index, status)

Input variables:

Index The Data_Index object to be finalized.

Output variables:

Index The Data_Index object has been finalized and is no longer valid.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

consolidated_status Consolidated Status.
deallocate_status Deallocation Status vector.

The Finalize Data_Index code listing in § D.4.2 on page 343 contains additional documentation.

9.4.3 Valid _State_Data_Index Procedure
The Valid_State_Data_Index procedure returns true iff the Data_Index is in a valid state — that is, iff the
Data_Index passes all of the valid state tests.
Calling syntax:
Logical = Valid_State(Index)

Input variables:

86 CHAPTER 9. DATA_STRUCTURES MODULE

Index The Data_Index to be checked.

Output variable:

Valid_State True iff the Data_Index is in a valid state.

The Valid_State_Data_Index code listing in § D.4.3 on page 344 contains additional documentation.

9.4.4 Initialized_Data_Index Procedure

The Initialized_Data_Index procedure returns true iff the Data_Index object has been initialized.
Calling syntax:
Logical = Initialized(Index)

Input variable:

Index The Data_Index object to be examined.

Output variable:

Initialized True iff the Data_Index object has been initialized.

The Initialized Data_Index code listing in § D.4.4 on page 346 contains additional documentation.

9.4.5 Generate_Shell Partition Procedure

The Generate_Shell Partition procedure returns the cell numbering for a “Shell Partitioning”. That is, it
returns an array giving cell number as a function of i, j, and k. It is called internally by the Initialize Shell -
Partition procedure in section 9.4.7.

The idea behind a “Shell Partitioning” is to develop a numbering for a very bad partitioning. This can then
be used to test algorithms to see how well they behave under adverse situations.

All the Shell Partitionings correspond to a structured, “linear”, “square” or “cubic”, mesh. The total size

of the mesh is SizeND1mens1ons, where Size is any integer (and is equal to the number of processors) and

NDimensions is 1, 2 or 3. Each processor then gets

prNDimensions _ (PE — 1)NDimensions (9.1)

cells, where PE is the processor number. The following is a conceptual description of what is happening. In
1-D, each PE gets one cell — an even partitioning. In 2-D each PE gets the newly added last column and
last row of a square, for example

XXXXX
X

X
X
X

for processor 5. In 3-D, each PE gets the newly added top and two sides (three sides total) of a cube.

9.4. DATA_INDEX CLASS 87

This routine provides a functional relationship for cell numbers by (i,j,k) triplet. The cell numbers are
contiguous for a PE, e.g. in 3-D the first PE has number 1, the second PE has numbers 2-8, the third PE
has numbers 9-27, etc.

Calling syntax:

call Generate_Shell_Partition (c, i_of_c, j_of_c, k_of_c,
NDimensions, NNodes_per_Side, Output)

Input variables:

NDimensions The number of dimensions (1=line, 2=square, 3=cube).
NNodes_per_Side The number of nodes in the line, or on the edges of the square or cube.
Output Output toggle.

Output variables:

c The cell numbers as a function of i, j, and k.
i_of_c, j_of_c, k_of_c The i, j, and k numbers for a particular cell number.

The Generate_Shell Partition code listing in § D.4.5 on page 346 contains additional documentation.

9.4.6 Get_Values_Data_Index Procedure

The Get_Values_Data_Index procedure gets the index values from a Data_Index object.
Calling syntax:

Values = Index or
call Get_Values (Values, Index)

Input variable:

Index The Data_Index object to be queried.

Output variable:

Values The index values from the Data_Index object.

The Get_Values_Data_Index code listing in § D.4.6 on page 348 contains additional documentation.

9.4.7 Initialize_Shell_Partition Procedure

The Initialize_Shell_Partition procedure sets up the Cell_Structure, the Node_Structure, and the Nodes_of_-
Cells_Index for a “Shell Partitioning”. The “Shell Partitioning” numbering scheme, which is designed to be
a poorly distributed scheme for testing purposes, is described in the Generate_Shell Partition procedure in
section 9.4.5.

Calling syntax:

call Initialize_Shell_Partition NDimensions, Cell_Structure, Node_Structure,
Nodes_of_Cells_Index, Output

Input variables:

88 CHAPTER 9. DATA_STRUCTURES MODULE

NDimensions The number of dimensions (1=line, 2=square, 3=cube).
Output Output toggle.

Output variables:

Cell_Structure The Cell Base_Structure object.
Node_Structure The Node Base_Structure object.
Nodes_of_Cells_Index The Nodes_of_Cells Data_Index object.

The Initialize Shell Partition code listing in § D.4.7 on page 350 contains additional documentation.

9.4.8 Output_Data_Index Procedure

The Output_Data_Index procedure writes out a section of a Data Index to the specified unit.
Calling syntax:
call Output (Index, First, Last, Unit, Indent, Output_OPE)

Input variables:

Index The Data_Index object to be queried.

First The first location to be output. [Optional]

Last The last location to be output. [Optional]

Unit The logical unit for output, which defaults to 6. [Optional]
Indent Number of indentation characters. [Optional]

Output_OPE Toggle for outputting the Off PE Index information. [Optional]

The Output_Data_Index code listing in § D.4.8 on page 352 contains additional documentation.

9.5 Assembled_Vector Class

The Assembled_Vector Class is used to describe an assembled vector (existing only on a single processor) in
the C&ESAR Code Package. An Assembled_Vector is part of the overall data structure strategy in CESAR,
which is made up of the following classes: Base _Structure, Data_Index, Assembled Vector, Distributed_-
Vector, Overlapped_Vector, and Collected_Array. A description of the overall data structure strategy can be
found in the Data_Structures Module (described in chapter 9 on page 63).

Assembled_Vector public procedures:

Fundamental procedures

Initialize Initializes an Assembled_Vector object.

Finalize Finalizes an Assembled_Vector object.

Valid_State Returns false iff an Assembled_Vector object is in an invalid state.

Initialized Returns true iff an Assembled_Vector object has been initialized.

Operations

Get_Values Gets the values from an Assembled_Vector object and returns them in a bare naked
vector (also has an assignment interface).

Locus Returns the locus of the Assembled_Vector object.

Name Returns the name of the Assembled_Vector object.

Output Writes out the Assembled_Vector object.

9.5. ASSEMBLED_VECTOR CLASS 89

Set_Values

Set_Version

Version

Sets the values of the Assembled_Vector object to a bare naked vector (also has an
assignment interface).

Sets the version number of the Assembled_Vector object (also has an assignment
interface).

Returns the version number of the Assembled_Vector object.

Assembled_Vector public defined type:

Assembled_Vector type

Dimensionality

Dimensions

Initialized
Name
NValues_Total
Structure
Values{n}

Version

The number of dimensions that the “vector” has, including the dimension that is
spread over the processors. “Ragged_Right” indices are signified by a Dimensional-
ity of -1. (Ragged Right is not yet implemented.)

The extents of the dimensions that the “vector” has, including the dimension that
is spread over the processors, which is last.

Initialization status.

The name for this variable (especially useful in a vector of Assembled Vectors).
Total number of values in this vector.

Basic data structure for the axis that is spread over the processors.

Values in the vector, only defined on the IO PE. Values may have either 1, 2, 3,
or 4 dimensions (n = 1, 2, 3, or 4), or be a ragged right array (n = RR). The last
dimension is always the dimension to be spread across the processors. Only one of
the variables will be allocated for a given object. Ragged right arrays have not been
implemented yet.

Version number which is incremented every time the vector is modified, or is synced
with the version number of a data structure that it depends on when it is updated.

The Assembled Vector Class code listing in § D.5 on page 357 contains additional documentation. The
Assembled_Vector Class also contains a Unit Test Program which is listed in § D.5.12 on page 373.

9.5.1 Imitialize_Assembled_Vector Procedure

The Initialize_Assembled_Vector procedure allocates and initializes a Assembled_Vector object.

Calling syntax:

call Initialize (AV, Structure, Dimensionality, Name, status, diml, dim2, dim3)

Input variables:

AV
Structure
Dimensionality

Name

dim{n}

Output variables:

The Assembled_Vector object to be initialized.

The basic data structure for this Assembled_Vector.

The number of dimensions that the “vector” has, including the dimension that is
spread over the processors. “Ragged Right” vectors are signified by a Dimension-
ality of -1.

The name for this variable (especially useful in a vector of Assembled Vectors).
[Optional]

The dimensions for this “vector”. There must be dimensions specified up to a
number one less than the Dimensionality. [Optional]

AV The Assembled_Vector object has been allocated and initialized.

90 CHAPTER 9. DATA_STRUCTURES MODULE

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.
Length_PE Length on this PE.

The Initialize_Assembled_Vector code listing in § D.5.1 on page 361 contains additional documentation.

9.5.2 Finalize_Assembled_Vector Procedure

The Finalize_Assembled_Vector procedure deallocates and finalizes an Assembled_Vector object.
Calling syntax:
call Finalize (AV, status)

Input variables:

AV The Assembled_Vector object to be finalized.

Output variables:

Av The Assembled_Vector object has been finalized and is no longer valid.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

consolidated_status Consolidated Status.
deallocate_status Deallocation Status vector.

The Finalize_Assembled_Vector code listing in § D.5.2 on page 363 contains additional documentation.

9.5.3 Valid_State_Assembled_Vector Procedure

The Valid_State_Assembled_Vector procedure returns true iff the Assembled_Vector is in a valid state — that
is, iff the Assembled_Vector passes all of the valid state tests.

Calling syntax:
Logical = Valid_State(AV)

Input variables:

AV The Assembled_Vector to be checked.

Output variable:

9.5. ASSEMBLED_VECTOR CLASS 91

Valid_State True iff the Assembled_Vector is in a valid state.

The Valid_State_Assembled_Vector code listing in § D.5.3 on page 364 contains additional documentation.

9.5.4 Initialized_Assembled_Vector Procedure

The Initialized _Assembled_Vector procedure returns true iff the Assembled_Vector object has been initialized.
Calling syntax:
Logical = Initialized(AV)

Input variable:

AV The Assembled_Vector object to be examined.

Output variable:

Initialized True iff the Assembled_Vector object has been initialized.

The Initialized _Assembled_Vector code listing in § D.5.4 on page 365 contains additional documentation.

9.5.5 Get_Locus_Assembled_Vector Procedure

The Get_Locus_Assembled_Vector procedure returns the locus of the Assembled Vector.
Calling syntax:
Character = Locus(AV)

Input variable:

AV The Assembled_Vector object to be queried.

Output variable:

Locus The locus of the Assembled_Vector object.

The Get_Locus_Assembled_Vector code listing in § D.5.5 on page 366 contains additional documentation.

9.5.6 Get_Name_Assembled_Vector Procedure

The Get_Name_Assembled_Vector procedure returns the name of the Assembled Vector.
Calling syntax:
Character = Name (AV)

Input variable:

AV The Assembled_Vector object to be queried.

92 CHAPTER 9. DATA_STRUCTURES MODULE

Output variable:

Name The name of the Assembled Vector object.

The Get_Name_Assembled_Vector code listing in § D.5.6 on page 367 contains additional documentation.

9.5.7 Get_Values_Assembled_Vector Procedure

The Get_Values_Assembled_Vector procedure gets the values from an Assembled Vector.
Calling syntax:

Values = AV or
call Get_Values (Values, AV)

Input variable:

AV The Assembled_Vector object to be queried.

Output variable:
Values The bare naked vector of values from the Assembled_Vector object, only defined on

the 10 PE.

The Get_Values_Assembled _Vector code listing in § D.5.7 on page 367 contains additional documentation.

9.5.8 Get_Version_Assembled_Vector Procedure

The Get_Version_Assembled_Vector procedure returns the version number for the Assembled Vector.
Calling syntax:
Integer = Version(AV)

Input variables:

AV The Assembled_Vector object to be queried.

Output variable:

Version The version number of the Assembled_Vector object.

The Get_Version_Assembled_Vector code listing in § D.5.8 on page 368 contains additional documentation.

9.5.9 Output_Assembled_Vector Procedure

The Output_Assembled_Vector procedure writes out a section of an Assembled Vector to the specified unit.
Calling syntax:
call Qutput (AV, First, Last, Unit)

Input variables:

9.5. ASSEMBLED_VECTOR CLASS 93

AV The Assembled_Vector object to be queried.
First The first location to be output. [Optional]
Last The last location to be output. [Optional]

Unit The logical unit for output, which defaults to 6. [Optional]

The Output_Assembled _Vector code listing in § D.5.9 on page 369 contains additional documentation.

9.5.10 Set_Values_Assembled_Vector Procedure

The Set_Values_Assembled_Vector procedure sets the values for the Assembled Vector.
Calling syntax:

AV = Values or
call Set_Values (AV, Values)

Input variable:
Values The bare naked vector of values for the Assembled_Vector object, only defined on
the I0 PE.
Input/Output variable:

AV The Assembled_Vector object to be set.

Internal variable:

Version_Increment The amount that the version number is incremented, which is a global class variable.

The Set_Values_Assembled_Vector code listing in § D.5.10 on page 371 contains additional documentation.

9.5.11 Set_Version_Assembled_Vector Procedure

The Set_Version_Assembled_Vector procedure sets the version number for the Assembled Vector.
Calling syntax:

AV = Version or
call Set_Version (AV, Version)

Input variable:

Version The version number for the Assembled_Vector object.

Input/Output variable:

AV The Assembled_Vector object to be set.

The Set_Version_Assembled Vector code listing in § D.5.11 on page 372 contains additional documentation.

94 CHAPTER 9. DATA_STRUCTURES MODULE

9.6 Distributed Vector Class

The Distributed_Vector Class is used to describe a distributed vector (existing across all the processors) in
the CESAR Code Package. A Distributed_Vector is part of the overall data structure strategy in CESAR,
which is made up of the following classes: Base_Structure, Data_Index, Assembled Vector, Distributed -
Vector, Overlapped_Vector, and Collected_Array. A description of the overall data structure strategy can be
found in the Data_Structures Module (described in chapter 9 on page 63).

The form of a Distributed_Vector object is given by:
Vector ([diml, [dim2, [dim3,]]] Structure_Axis)
or

Vector (dim_ragged_right, Structure_Axis)
--> not implemented

where Structure_Axis refers to the axis which is spread across the processors.

Distributed_Vector public procedures:

Fundamental procedures

Initialize Initializes a Distributed_Vector object.

Finalize Finalizes a Distributed_Vector object.

Valid_State Returns false iff a Distributed_Vector object is in an invalid state.

Initialized Returns true iff a Distributed_Vector object has been initialized.

Operations

Assemble Sets an Assembled_Vector object to a Distributed_Vector object by assembling the
data on the IO PE (also has an assignment interface).

Distribute Sets a Distributed_Vector object to an Assembled_Vector object by distributing the
data from the IO PE to all the PEs (also has an assignment interface).

Get_Values Gets the values from a Distributed_Vector object and returns them in a bare naked
vector (also has an assignment interface).

Locus Returns the locus of the Distributed_Vector object.

Name Returns the name of the Distributed_Vector object.

Output Writes out the Distributed_Vector object.

Set_Values Sets the values of the Distributed_Vector object to a bare naked vector (also has an

Set_Version

Version

assignment interface).

Sets the version number of the Distributed_Vector object (also has an assignment
interface).

Returns the version number of the Distributed_Vector object.

Distributed_Vector public defined type:

Distributed _Vector type

Dimensionality The number of dimensions that the index“vector” has, including the dimension that
is spread over the processors. “Ragged _Right” indices are signified by a Dimension-
ality of -1. (Ragged_Right is not yet implemented.)

Dimensions The extents of the dimensions that the “vector” has, including the dimension that
is spread over the processors, which is last.

Initialized Initialization status.

Name The name for this variable (especially useful in a vector of Distributed Vectors).

NValues_PE Number of values on this PE.

NValues_Total
NValues_Vector

Structure

Total number of values in the entire vector (including all PEs).
A vector containing the number of values on each PE.
Basic data structure for the axis that is spread over the processors.

9.6. DISTRIBUTED_VECTOR CLASS 95

Values{n} Values in the vector, with a different length on each PE. Values may have either 1,
2, 3, or 4 dimensions (n = 1, 2, 3, or 4), or be a ragged right array (n = RR). The
last dimension is always the dimension to be spread across the processors. Only
one of the variables will be allocated for a given object. Ragged right arrays have
not been implemented yet.

Version Version number which is incremented every time the vector is modified, or is synced
with the version number of a data structure that it depends on when it is updated.

The Distributed_Vector Class code listing in § D.6 on page 374 contains additional documentation. The
Distributed_Vector Class also contains a Unit Test Program which is listed in § D.6.14 on page 396.

9.6.1 Imitialize_Distributed_Vector Procedure

The Initialize Distributed_Vector procedure allocates and initializes a Distributed_Vector object.
Calling syntax:
call Initialize (DV, Structure, Dimensionality, Name, status, diml, dim2, dim3)

Input variables:

DV The Distributed_Vector object to be initialized.

Structure The basic data structure for this Distributed_Vector.

Dimensionality The number of dimensions that the “vector” has, including the dimension that is
spread over the processors. “Ragged Right” vectors are signified by a Dimension-

ality of -1.

Name The name for this variable (especially useful in a vector of Distributed Vectors).
[Optional]

dim{n} The dimensions for this “vector”. There must be dimensions specified up to a

number one less than the Dimensionality. [Optional]

Output variables:

DV The Distributed_Vector object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.
consolidated_status Consolidated Status.
NSlice Number of values that are on one slice, given by a constant location on the dis-

tributed axis.

The Initialize Distributed_Vector code listing in § D.6.1 on page 378 contains additional documentation.

9.6.2 Finalize_Distributed_Vector Procedure

The Finalize Distributed_Vector procedure deallocates and finalizes an Distributed_Vector object.

Calling syntax:

96 CHAPTER 9. DATA_STRUCTURES MODULE

call Finalize (DV, status)

Input variables:

DV The Distributed_Vector object to be finalized.

Output variables:

DV The Distributed_Vector object has been finalized and is no longer valid.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

consolidated_status Consolidated Status.
deallocate_status Deallocation Status vector.

The Finalize Distributed_Vector code listing in § D.6.2 on page 381 contains additional documentation.

9.6.3 Valid_State_Distributed_Vector Procedure

The Valid_State_Distributed_Vector procedure returns true iff the Distributed_Vector is in a valid state —
that is, iff the Distributed_Vector passes all of the valid state tests.

Calling syntax:
Logical = Valid_State(DV)

Input variables:

DV The Distributed_Vector to be checked.

Output variable:

Valid_State True iff the Distributed_Vector is in a valid state.

The Valid_State_Distributed_Vector code listing in § D.6.3 on page 382 contains additional documentation.

9.6.4 Initialized_Distributed_Vector Procedure
The Initialized _Distributed_Vector procedure returns true iff the Distributed_Vector object has been initial-
ized.
Calling syntax:
Logical = Initialized(DV)

Input variable:

DV The Distributed_Vector object to be examined.

9.6. DISTRIBUTED_VECTOR CLASS 97

Output variable:

Initialized True iff the Distributed_Vector object has been initialized.

The Initialized Distributed _Vector code listing in § D.6.4 on page 384 contains additional documentation.

9.6.5 Assemble_ AV _from_DV Procedure

The Assemble_ AV _from DV procedure sets an Assembled Vector to a Distributed Vector by assembling the
data on the I0 PE.

Calling syntax:

AV = DV or
call Assemble (AV, DV)

Input variable:

DV The Distributed_Vector object to be assembled.

Output variable:

AV The Assembled_Vector object, completely on the I0 PE.

The Assemble AV _from_DV code listing in § D.6.5 on page 384 contains additional documentation.

9.6.6 Distribute_ AV _to_DV Procedure

The Distribute_ AV _to_ DV procedure sets a Distributed Vector to an Assembled Vector by distributing the
data from the IO PE to all the PEs.

Calling syntax:

DV = AV or
call Distribute (DV, AV)

Input variable:

AV The Assembled_Vector object to be distributed.

Output variable:

DV The Distributed_Vector object, distributed over all the PEs.

The Distribute_AV_to_DV code listing in § D.6.6 on page 386 contains additional documentation.

9.6.7 Get_Locus_Distributed_Vector Procedure

The Get_Locus_Distributed_Vector procedure returns the locus of the Distributed Vector.
Calling syntax:

Character = Locus(DV)

98 CHAPTER 9. DATA_STRUCTURES MODULE

Input variable:

DV The Distributed_Vector object to be queried.

Output variable:

Locus The locus of the Distributed_Vector object.

The Get_Locus_Distributed_Vector code listing in § D.6.7 on page 387 contains additional documentation.

9.6.8 Get_Name_Distributed_Vector Procedure

The Get_Name_Distributed_Vector procedure returns the name of the Distributed Vector.
Calling syntax:
Character = Name (DV)

Input variable:

DV The Distributed_Vector object to be queried.

Output variable:

Name The name of the Distributed_Vector object.

The Get_Name_Distributed_Vector code listing in § D.6.8 on page 388 contains additional documentation.

9.6.9 Get_Values_Distributed_Vector Procedure

The Get_Values_Distributed_Vector procedure gets the values from a Distributed Vector.
Calling syntax:

Values = DV or
call Get_Values (Values, DV)

Input variable:

DV The Distributed_Vector object to be queried.

Output variable:

Values The bare naked vector of values from the Distributed_Vector object, defined differ-
ently on each PE.

The Get_Values_Distributed_Vector code listing in § D.6.9 on page 388 contains additional documentation.

9.6.10 Get_Version_Distributed_Vector Procedure

The Get_Version_Distributed_Vector procedure returns the version number for the Distributed Vector.

9.6. DISTRIBUTED_VECTOR CLASS 99

Calling syntax:
Integer = Version(DV)

Input variables:

DV The Distributed_Vector object to be queried.

Output variable:

Version The version number of the Distributed_Vector object.

The Get_Version_Distributed_Vector code listing in § D.6.10 on page 389 contains additional documentation.

9.6.11 Output_Distributed_Vector Procedure

The Output_Distributed_Vector procedure writes out a section of a Distributed Vector to the specified unit.
Calling syntax:
call Qutput (DV, First, Last, Unit, Indent)

Input variables:

DV The Distributed_Vector object to be queried.

First The first location to be output. [Optional]

Last The last location to be output. [Optional]

Unit The logical unit for output, which defaults to 6. [Optional]
Indent Number of indentation characters. [Optional]

The Output_Distributed_Vector code listing in § D.6.11 on page 390 contains additional documentation.

9.6.12 Set_Values_Distributed_Vector Procedure

The Set_Values_Distributed_Vector procedure sets the values for the Distributed Vector.
Calling syntax:

DV = Values or
call Set_Values (DV, Values)

Input variable:
Values The bare naked vector of values for the Distributed_Vector object, defined differently
on each PE.
Input/Output variable:

DV The Distributed_Vector object to be set.

Internal variable:

Version_Increment The amount that the version number is incremented, which is a global class variable.

100 CHAPTER 9. DATA_STRUCTURES MODULE

The Set_Values_Distributed_Vector code listing in § D.6.12 on page 394 contains additional documentation.

9.6.13 Set_Version_Distributed_Vector Procedure

The Set_Version_Distributed_Vector procedure sets the version number for the Distributed Vector.
Calling syntax:

DV = Version or
call Set_Version (DV, Version)

Input variable:

Version The version number for the Distributed_Vector object.

Input/Output variable:

DV The Distributed_Vector object to be set.

The Set_Version_Distributed_Vector code listing in § D.6.13 on page 395 contains additional documentation.

9.7 Overlapped_Vector Class

The Overlapped_Vector Class is used to describe an overlapped vector (existing across all the processors) in
the C&SAR Code Package. An Overlapped_Vector is part of the overall data structure strategy in CESAR,
which is made up of the following classes: Base Structure, Data_Index, Assembled Vector, Distributed -
Vector, Overlapped_Vector, and Collected_Array. A description of the overall data structure strategy can be
found in the Data_Structures Module (described in chapter 9 on page 63).

The form of a collected Overlapped_Vector object is given by:
Array ([diml, [dim2, [dim3,]]] One_Axis [, Many_Axis])
or

Array (dim_ragged_right, One_Axis [, Many_Axis])
--> not implemented

where One_Axis refers to the axis which is spread across the processors.

Overlapped_Vector public procedures:

Fundamental procedures

Initialize Initializes an Overlapped_Vector object.

Finalize Finalizes an Overlapped_Vector object.

Valid_State Returns false iff an Overlapped_Vector object is in an invalid state.
Initialized Returns true iff an Overlapped_Vector object has been initialized.
Operations

Collect_and_Access Another name for Get_Values.

Collect_and_Combine Collects the values from an Overlapped Vector, and then combines them to form
a Distributed Vector, according to the internal Many_of_One Index object. The
resultant Distributed Vector is distributed according to the One Structure of the
Overlapped Vector. A combination operator, to be put in the place of “Combine”,
must be specified. Allowed values for “Combine” are: Average, MAX, MIN, or SUM.
Collect_and_SUM also has an assignment interface.

9.7. OVERLAPPED_VECTOR CLASS 101

Gather
Get_Values

Many_Locus
Name
One_Locus
Output
Set_Version

Version

Does the communication necessary to set an Overlapped Vector from a Distributed

Vector (also has an assignment interface).

Collects and accesses the values from an Overlapped_Vector object and returns them

in a bare naked array (also has an assignment interface).

Returns the Many Structure locus of the Overlapped_Vector object.
Returns the name of the Overlapped_Vector object.

Returns the One Structure locus of the Overlapped_Vector object.
Writes out the Overlapped_Vector object.

Sets the version number of the Overlapped_Vector object (also has an assignment

interface).
Returns the version number of the Overlapped_Vector object.

Overlapped_Vector public defined type:

Overlapped_Vector type

Dimensionality

Dimensions

DV
DV_Internal

Initialized
Many_of_One_Index
Many_Structure

Name

One_Structure

Overlap_Index
Overlap_Trace
Overlap_Values{n}

Version

The number of dimensions that the “vector” has, including the dimension that is
spread over the processors. “Ragged Right” indices are signified by a Dimensional-
ity of -1. (Ragged_Right is not yet implemented.)

The extents of the dimensions that the “vector” has, including the dimension that
is spread over the processors, which is last.

A pointer to the Distributed Vector that this Overlapped Vector is based on.

An internal Distributed Vector that is constructed if the Overlapped Vector is not
based on an external Distributed Vector.

Initialization status.

The Index that is used to modify the Distributed Vector.

Basic data structure which corresponds to the structure of the Distributed Vector
that this Overlapped Vector is based on.

The name for this variable (especially useful in a vector of Overlapped Vectors).
Basic data structure which corresponds to the way that this Overlapped Vector has
been formed. If this Overlapped Vector were to be combined, it would result in a
Distributed Vector with a One_Structure basis.

The index for the distributed axis of the off-PE values.

The trace for the distributed axis of the off-PE values.

Off-PE values in the vector, that are stored locally, with a different length on each
PE. Values may have either 1, 2, 3, or 4 dimensions (n = 1, 2, 3, or 4), or be a
ragged right array (n = RR). The last dimension is always the dimension to be
spread across the processors. Only one of the variables will be allocated for a given
object. Ragged right arrays have not been implemented yet.

Version number which is incremented every time the vector is modified, or is synced
with the version number of a data structure that it depends on when it is updated.

The Overlapped_Vector Class code listing in § D.7 on page 398 contains additional documentation. The
Overlapped_Vector Class also contains a Unit Test Program which is listed in § D.7.13 on page 428.

9.7.1 Initialize_Overlapped_Vector Procedure

The Initialize_Overlapped_Vector procedure allocates and initializes a Overlapped_Vector object. There are
two ways to initialize an Overlapped_Vector object, depending on whether or not the underlying Distributed -
Vector object is internally created.

Calling syntax:

call Initialize (0OV, DV, Many_of_One_Index, Name, status)
call Initialize (0V, Many_of_One_Index, Dimensionality, Name, status, diml, dim2, dim3)

or

102

Input variables:

ov
DV
Many_of_One_Index

Dimensionality

Name

dim{n}

Output variables:

CHAPTER 9. DATA_STRUCTURES MODULE

The Overlapped_Vector object to be initialized.

The Distributed_Vector object which the Overlapped_Vector is to be based on.

An index giving the relationship of the “Many” and “One” axes to each other for
this Overlapped_Vector.

The number of dimensions that the “vector” has, including the dimension that is
spread over the processors. “Ragged_Right” vectors are signified by a Dimension-
ality of -1.

The name for this variable (especially useful in a vector of Overlapped Vectors).
[Optional]

The dimensions for this “vector”. There must be dimensions specified up to a
number one less than the Dimensionality. These are only needed in the second form
of the call. [Optional]

¢

ov The Overlapped_Vector object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status
consolidated_status

Allocation Status.
Consolidated Status.

The Initialize_Overlapped_Vector code listing in § D.7.1 on page 402 contains additional documentation.

9.7.2 Finalize Overlapped_Vector Procedure

The Finalize_Overlapped_Vector procedure deallocates and finalizes an Overlapped_Vector object.

Calling syntax:

call Finalize (0V, status)

Input variables:

ov The Overlapped_Vector object to be finalized.

Output variables:

ov The Overlapped_Vector object has been finalized and is no longer valid.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

consolidated_status
deallocate_status

Consolidated Status.
Deallocation Status vector.

9.7. OVERLAPPED_VECTOR CLASS 103

The Finalize_Overlapped_Vector code listing in § D.7.2 on page 406 contains additional documentation.

9.7.3 Valid_State_Overlapped_Vector Procedure

The Valid_State_Overlapped_Vector procedure returns true iff the Overlapped_Vector is in a valid state —
that is, iff the Overlapped_Vector passes all of the valid state tests.

Calling syntax:
Logical = Valid_State(QV)

Input variables:

ov The Overlapped_Vector to be checked.

Output variable:

Valid_State True iff the Overlapped_Vector is in a valid state.

The Valid_State_Overlapped_Vector code listing in § D.7.3 on page 408 contains additional documentation.

9.7.4 Initialized_Overlapped_Vector Procedure

The Initialized_Overlapped_Vector procedure returns true iff the Overlapped_Vector object has been initial-
ized.

Calling syntax:
Logical = Initialized(0QV)

Input variable:

ov The Overlapped_Vector object to be examined.

Output variable:

Initialized True iff the Overlapped_Vector object has been initialized.

The Initialized _Overlapped_Vector code listing in § D.7.4 on page 409 contains additional documentation.

9.7.5 Collect_and_Combine_ DV _from_OV Procedure

The Collect_and_Combine DV _from_OV procedures collect the values from an Overlapped Vector, and then
combine them to form a Distributed Vector. Specifically, each procedure does a Collect and Combine on the
data in the Overlapped Vector, with the same result that would occur if an intermediate Collected Array
had been constructed. (Collect_and_Conserve has not been implemented yet.)

Calling syntax:

104 CHAPTER 9. DATA_STRUCTURES MODULE

call Collect_and_Average (DV, 0OV) ,
call Collect_and_Conserve (DV, OV) ,
call Collect_and_MAX (DV, 0OV) ,
call Collect_and_MIN (DV, 0OV) ,
call Collect_and_SUM (DV, QV) or
DV = 0V [Collect_and_SUM]

Input variable:

ov The Overlapped_Vector object to be queried.

Output variable:

DV The Distributed_Vector object result, distributed with the One_Structure of the
Overlapped_Vector object.

The Collect_and_Combine DV _from OV code listing in § D.7.5 on page 410 contains additional documenta-
tion.

9.7.6 Gather_ OV _from_DV Procedure

The Gather_OV _from_DV procedure does the communication necessary to set an Overlapped Vector from
a Distributed Vector. No communication is done if the Overlapped Vector is already up-to-date with the
Distributed Vector.

Calling syntax:

0V = DV or
call Gather (0OV, DV)

Input variable:

DV The Distributed_Vector object to be gathered.

Output variable:

ov The Overlapped_Vector object, updated to correspond with the input Distributed_-
Vector object.

The Gather_ OV _from DV code listing in § D.7.6 on page 415 contains additional documentation.

9.7.7 Get_Locus_Overlapped_Vector Procedure

The Get_Many_Locus-OV and Get_One_Locus-OV procedures return the loci of the Many and One Structures
of the Overlapped Vector respectively.

Calling syntax:

Character
Character

Many_Locus (0V) or
One_Locus (QV)

Input variable:

ov The Overlapped_Vector object to be queried.

9.7. OVERLAPPED_VECTOR CLASS 105

Output variable:

Locus The specified locus of the Overlapped_Vector object.

The Get_Locus_Overlapped_Vector code listing in § D.7.7 on page 417 contains additional documentation.

9.7.8 Get_Name_Overlapped_Vector Procedure

The Get_Name_Overlapped_Vector procedure returns the name of the Overlapped Vector.
Calling syntax:
Character = Name (QV)

Input variable:

ov The Overlapped_Vector object to be queried.

Output variable:

Name The name of the Overlapped_Vector object.

The Get_Name_Overlapped_Vector code listing in § D.7.8 on page 417 contains additional documentation.

9.7.9 Get_Values_Overlapped_Vector Procedure

The Get_Values_Overlapped Vector procedure gets the values from an Overlapped Vector, in the form of a
Bare Naked Array. Specifically, it does a Collect and Access on the data in the Overlapped Vector, with the
same result that would occur if an intermediate Collected Array had been constructed.

Calling syntax:

Values = 0V R
call Get_Values (Values, 0V) or
call Collect_and_Access (Values, 0V)

Input variable:

ov The Overlapped_Vector object to be queried.

Output variable:

Values The bare naked array of values from the Overlapped_Vector object, defined differ-
ently on each PE.

The Get_Values_Overlapped_Vector code listing in § D.7.9 on page 418 contains additional documentation.

9.7.10 Get_Version_Overlapped_Vector Procedure

The Get_Version_Overlapped_Vector procedure returns the version number for the Overlapped Vector.

Calling syntax:

106 CHAPTER 9. DATA_STRUCTURES MODULE
Integer = Version(0V)
Input variables:

ov The Overlapped_Vector object to be queried.

Output variable:

Version The version number of the Overlapped_Vector object.

The Get_Version_Overlapped_Vector code listing in § D.7.10 on page 423 contains additional documentation.

9.7.11 Owutput_Overlapped_Vector Procedure

The Output_Overlapped_Vector procedure writes out a section of an Overlapped Vector to the specified unit.
Calling syntax:
call Output (OV, Many_First, Many_Last, One_First, One_Last, Unit)

Input variables:

ov The Overlapped_Vector object to be queried.

Many_First The first location on the Many Axis to be output. [Optional]
Many_Last The last location on the Many Axis to be output. [Optional]
One_First The first location on the One Axis to be output. [Optional]
One_Last The last location on the One Axis to be output. [Optional]
Unit The logical unit for output, which defaults to 6. [Optional]

The Output_Overlapped_Vector code listing in § D.7.11 on page 424 contains additional documentation.

9.7.12 Set_Version_Overlapped_Vector Procedure

The Set_Version_Overlapped_Vector procedure sets the version number for the Overlapped Vector.
Calling syntax:

0V = Version or
call Set_Version (0V, Version)

Input variable:

Version The version number for the Overlapped_Vector object.

Input/Output variable:

ov The Overlapped_Vector object to be set.

The Set_Version_Overlapped_Vector code listing in § D.7.12 on page 428 contains additional documentation.

9.8. COLLECTED_ARRAY CLASS 107

9.8 Collected_Array Class

The Collected_Array Class is used to describe a collected array (existing across all the processors) in the
C&EsAR Code Package. A Collected_Array is part of the overall data structure strategy in CESAR, which
is made up of the following classes: Base_Structure, Data Index, Assembled Vector, Distributed_Vector,
Overlapped_Vector, and Collected_Array. A description of the overall data structure strategy can be found
in the Data_Structures Module (described in chapter 9 on page 63).

The form of a Collected_Array object is given by:

Array ([diml, [dim2, [dim3,]]] One_Axis [, Many_Axis])

or

Array (dim_ragged_right, One_Axis [, Many_Axis])

--> not implemented

where One_Axis refers to the axis which is spread across the processors.

Collected _Array public procedures:

Fundamental procedures

Initialize
Finalize
Valid_State
Initialized
Operations
Collect
Combine_with_0Op

Gather

Gather_and_Collect
Get_Values

Many_Locus
Name
One_Locus
Output
Set_Values

Set_Version

Version

Initializes a Collected_Array object.

Finalizes a Collected_Array object.

Returns false iff a Collected_Array object is in an invalid state.
Returns true iff a Collected_Array object has been initialized.

Collects the values from an Overlapped Vector and stores them in a Collected Array.
Combines the values from a Collected Array, to form a Distributed Vector. The
resultant Distributed Vector is distributed according to the One Structure of the
Collected Array. A combination operator, to be put in the place of “Op”, must be
specified. Allowed values for “Op” are: Average, MAX, MIN, or SUM. Combine with_-
SUM also has an assignment interface.

Does the communication necessary to set a Collected Array from a Distributed
Vector (also has an assignment interface).

Another name for Gather.

Accesses the values from a Collected_Array object and returns them in a Bare Naked
Array (also has an assignment interface).

Returns the Many Structure locus of the Collected_Array object.

Returns the name of the Collected_Array object.

Returns the One Structure locus of the Collected_Array object.

Writes out the Collected_Array object.

Sets the values of the Collected_Array object to a Bare Naked Array (also has an
assignment interface).

Sets the version number of the Collected_Array object (also has an assignment
interface).

Returns the version number of the Collected_Array object.

Collected_Array public defined type:

Collected _Array type

A_Dimensionality

The actual number of dimensions that the “array” has, including the dimension
that is spread over the processors (the One_Axis), and also including the Many -
Axis, if it is present. “Ragged_Right” indices are signified by a Dimensionality of
-1. (Ragged Right is not yet implemented.)

108

Dimensionality

Dimensions
Initialized
Many_of_One_Index
Many_Structure
Name

One_Structure

Values{n}

Version

CHAPTER 9. DATA_STRUCTURES MODULE

The number of dimensions that the “array” has, including the dimension that is
spread over the processors (the One_Axis), but not including the Many_Axis, if it is
present. “Ragged Right” indices are signified by a Dimensionality of -1. (Ragged_-
Right is not yet implemented.)

The extents of the dimensions that the “array” has, including the dimensions for
the One_Axis and the Many_Axis.

Initialization status.

The Index that is used to translate between the Distributed Vectors.

Basic data structure which corresponds to the structure of the Distributed Vector
that this Collected Array is based on.

The name for this variable (especially useful in a vector of Collected Arrays).
Basic data structure which corresponds to the way that this Collected Array has
been formed. If this Collected Array were to be combined, it would result in a
Distributed Vector with a One_Structure basis.

Values in the array, that are stored locally, with a different length on each PE.
Values may have either 1, 2, 3, 4, or 5 dimensions (n = 1, 2, 3, 4, or 5), or be a
ragged right array (n = RR). The last dimension is the dimension that is spread
across the processors, if the Many_of_One_Index is a vector index. Otherwise, the
penultimate axis will be spread across the processors. Only one of the variables will
be allocated for a given object. Ragged right arrays have not been implemented
yet.

Version number which is incremented every time the array is modified, or is synced
with the version number of a data structure that it depends on when it is updated.

The Collected_Array Class code listing in § D.8 on page 432 contains additional documentation. The
Collected_Array Class also contains a Unit Test Program which is listed in § D.8.15 on page 461.

9.8.1 Initialize_Collected_Array Procedure

The Initialize_Collected_Array procedure allocates and initializes a Collected _Array object. There are two
ways to initialize an Collected_Array object, depending on whether or not the underlying Distributed_Vector
object is internally created.

Calling syntax:

call Initialize (CA, OV, Name, status)
call Initialize (CA, Many_of_One_Index, Dimensionality, Name, status, diml, dim2, dim3)

Input variables:

CA
ov

Many_of_One_Index

Dimensionality

Name

The Collected _Array object to be initialized.

An Overlapped_Vector object which the Collected_Array is to be based on. Note
that the Collected_Array will not contain the Overlapped_Vector or require the
Overlapped_Vector to be used in an assignment statement, but rather the Col-
lected_Array will have a structure that is compatible with the Overlapped_Vector
and will be set to the Overlapped_Vector during initialization.

An index giving the relationship of the “Many” and “One” axes to each other for
this Collected Array.

The number of dimensions that the “array” has, including the dimension that is
spread over the processors (the One_Axis), but not including the Many_Axis, if it
is present. “Ragged Right” vectors are signified by a Dimensionality of -1.

The name for this variable (especially useful in a vector of Collected Arrays). [Op-
tional]

9.8. COLLECTED_ARRAY CLASS 109

dim{n} The dimensions for this “array”. There must be dimensions specified up to a number
one less than the Dimensionality. These are only needed in the second form of the
call. [Optional]

Output variables:

CA The Collected_Array object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.
consolidated_status Consolidated Status.

The Initialize_ Collected_Array code listing in § D.8.1 on page 437 contains additional documentation.

9.8.2 Finalize_Collected_Array Procedure

The Finalize_Collected_Array procedure deallocates and finalizes an Collected_Array object.
Calling syntax:
call Finalize (CA, status)

Input variables:

cA The Collected _Array object to be finalized.

Output variables:

CA The Collected_Array object has been finalized and is no longer valid.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

consolidated_status Consolidated Status.
deallocate_status Deallocation Status vector.

The Finalize Collected_Array code listing in § D.8.2 on page 442 contains additional documentation.

9.8.3 Valid_State_Collected_Array Procedure
The Valid_State_Collected_Array procedure returns true iff the Collected_Array is in a valid state — that is,
iff the Collected_Array passes all of the valid state tests.
Calling syntax:
Logical = Valid_State(CA)

110 CHAPTER 9. DATA_STRUCTURES MODULE

Input variables:

CA The Collected Array to be checked.

Output variable:

Valid_State True iff the Collected_Array is in a valid state.

The Valid_State_Collected_Array code listing in § D.8.3 on page 443 contains additional documentation.

9.8.4 Initialized Collected _Array Procedure

The Initialized_Collected_Array procedure returns true iff the Collected_Array object has been initialized.
Calling syntax:
Logical = Initialized(CA)

Input variable:

CA The Collected_Array object to be examined.

Output variable:

Initialized True iff the Collected_Array object has been initialized.

The Initialized_Collected _Array code listing in § D.8.4 on page 445 contains additional documentation.

9.8.5 Collect_CA _from_OV Procedure

The Collect_CA _from_OV procedure collects the values from an Overlapped Vector to form a Collected Array.
Calling syntax:

call Collect (CA, 0OV) or
CA = 0V

Input variable:

ov The Overlapped_Vector object to be queried.

Output variable:

CA The Collected_Array object result.

The Collect_CA _from_OV code listing in § D.8.5 on page 446 contains additional documentation.

9.8.6 Combine DV _from_CA Procedure

The Combine DV _from_CA procedures combine the values from a Collected Array to form a Distributed
Vector. (Conserve has not been implemented yet.)

9.8. COLLECTED_ARRAY CLASS 111

Calling syntax:

call Combine_with_Average (DV, CA) ,
call Combine_with_Conserve (DV, CA) ,
call Combine_with_MAX (DV, CA) ,
call Combine_with_MIN (DV, CA) ,
call Combine_with_SUM (DV, CA) or
DV = CA [SuM]

Input variable:

CA The Collected _Array object to be queried.

Output variable:

DV The Distributed_Vector object result, distributed with the One_Structure of the
Collected_Array object.

The Combine DV from_CA code listing in § D.8.6 on page 447 contains additional documentation.

9.8.7 Gather_and_Collect_CA _from_DV Procedure

The Gather_and_Collect_CA _from_DV procedure does the communication necessary to set a Collected Array
from a Distributed Vector, according to the Many of One Index which is inside the Collected Array. No
communication is done if the Collected Array is already up-to-date with the Distributed Vector.

Calling syntax:

CA = DV ,
call Gather (CA, DV) or
call Gather_and_Collect (CA, DV)

Input variable:

DV The Distributed_Vector object to be gathered.

Output variable:

CA The Collected_Array object, updated to correspond with the input Distributed_-
Vector object.

The Gather_and_Collect_CA _from_DV code listing in § D.8.7 on page 449 contains additional documentation.

9.8.8 Get_Locus_Collected_Array Procedure

The Get_Many_Locus_CA and Get_One_Locus_CA procedures return the loci of the Many and One Structures
of the Collected Array respectively.

Calling syntax:

Character = Many_Locus(CA) or
Character = One_Locus(CA)

Input variable:

112 CHAPTER 9. DATA_STRUCTURES MODULE

CA The Collected _Array object to be queried.

Output variable:

Locus The specified locus of the Collected_Array object.

The Get_Locus_Collected_Array code listing in § D.8.8 on page 451 contains additional documentation.

9.8.9 Get_Name_Collected_Array Procedure

The Get_Name_Collected_Array procedure returns the name of the Collected Array.
Calling syntax:
Character = Name(CA)

Input variable:

cA The Collected _Array object to be queried.

Output variable:

Name The name of the Collected _Array object.

The Get_Name_Collected _Array code listing in § D.8.9 on page 452 contains additional documentation.

9.8.10 Get_Values_Collected_Array Procedure

The Get_Values_Collected_Array procedure gets the values from an Collected Array, in the form of a Bare
Naked Array.

Calling syntax:

Values = CA or
call Get_Values (Values, CA)

Input variable:

CcA The Collected_Array object to be queried.

Output variable:

Values The Bare Naked Array of values from the Collected_Array object, defined differently
on each PE.

The Get_Values_Collected_Array code listing in § D.8.10 on page 453 contains additional documentation.

9.8.11 Get_Version_Collected_Array Procedure

The Get_Version_Collected_Array procedure returns the version number for the Collected Array.

Calling syntax:

9.8. COLLECTED_ARRAY CLASS 113

Integer = Version(CA)

Input variables:

cA The Collected _Array object to be queried.

Output variable:

Version The version number of the Collected_Array object.

The Get_Version_Collected_Array code listing in § D.8.11 on page 454 contains additional documentation.

9.8.12 Output_Collected_Array Procedure

The Output_Collected_Array procedure writes out a section of a Collected Array to the specified unit.
Calling syntax:
call Output (CA, One_First, One_Last, Unit)

Input variables:

CA The Collected _Array object to be queried.

One_First The first location on the One Axis to be output. [Optional]
One_Last The last location on the One Axis to be output. [Optional]
Unit The logical unit for output, which defaults to 6. [Optional]

The Output_Collected_Array code listing in § D.8.12 on page 454 contains additional documentation.

9.8.13 Set_Values_Collected_Array Procedure

The Set_Values_Collected_Array procedure sets the values for the Collected Array.
Calling syntax:

CA = Values or
call Set_Values (CA, Values)

Input variable:

Values The Bare Naked Array of values for the Collected_Array object, defined differently
on each PE.

Input/Output variable:

CA The Collected _Array object to be set.

Internal variable:

Version_Increment The amount that the version number is incremented, which is a global class variable.

The Set_Values_Collected_Array code listing in § D.8.13 on page 459 contains additional documentation.

114 CHAPTER 9. DATA_STRUCTURES MODULE

9.8.14 Set_Version_Collected _Array Procedure

The Set_Version_Collected _Array procedure sets the version number for the Collected Array.
Calling syntax:

CA = Version or
call Set_Version (CA, Version)

Input variable:

Version The version number for the Collected_Array object.

Input/Output variable:

cA The Collected _Array object to be set.

The Set_Version_Collected_Array code listing in § D.8.14 on page 460 contains additional documentation.

Chapter 10

Mathematics Module

To those who do mot know mathematics it is difficult to get across a real feeling as to the
beauty, the deepest beauty of nature. If you want to learn about nature, to appreciate nature, it
is necessary to understand the language that she speaks in. — Richard Feynman (1918-1988)

Anyone who cannot cope with mathematics is not fully human. At best he is a tolerable subhuman
who has learned to wear boots, bathe, and not make messes in the house. — Robert Heinlein, “Time
Enough for Love”

... beware of mathematicians and all those who make empty prophecies. The danger already exists
that mathematicians have made a covenant with the devil to darken the spirit and confine man
in the bonds of Hell. — St. Augustine, DeGenesi ad Litteram

Many mathematical constructions are repeated over and over in a large computer code. In the CESAR code
package, they are all grouped together to ensure that they are done in a consistent, correct manner which is
easily updated.

The Mathematics Module code listing in § E on page 467 contains additional documentation.

10.1 Math_Utils Module

The Math_Utils Module provides utility routines to solve mathematical problems for the C&SAR Code
Package.

The Math_Utils methods section in § 15.1 on page 185 describes the methods used in the Math_Utils Class.

Math_Utils public procedures:

Prime_Factors Returns a vector containing the prime factorization of a number.

The Math_Utils Module code listing in § E.1 on page 467 contains additional documentation. The Math_Utils
Module also contains a Unit Test Program which is listed in § E.1.2 on page 471.

10.1.1 Prime_Factors_Math_Utils Procedure

The Prime Factors_Math_Utils procedure returns a vector of the prime factors for a given number. For
negative numbers, it returns a vector with “-1” in the first position and then the prime factorization for the
corresponding positive number. For zero, it returns a single zero as the prime factorization. The procedure

115

116 CHAPTER 10. MATHEMATICS MODULE

gives correct answers for all integers in the range [-HUGE () ,HUGE()].
Calling syntax:
call Prime_Factors (Number, NFactors, Factors, Verbose)

Input variables:

The number to be factored.
Toggle for output. Default is false. [optional]

Number
Verbose
Output variables:

The number of prime factors.
A vector of the prime factors.

NFactors
Factors(32)

The Prime Factors-Math_Utils code listing in § E.1.1 on page 468 contains additional documentation.

10.2 Statistics Class

The Statistics Class is used to describe a Statistics object in the CESAR Code Package. A Statistics object
contains statistical information about a set of values that have been added to it. The statistical information
that is available includes means (arithmetic, geometric and harmonic), extrema and the standard deviation.
It does not include information that would require the storage of the entire set of values, such as median

and mode.

The Statistics methods section in § 15.2 on page 186 describes the methods used in the Statistics Class.

Statistics public procedures:

Fundamental procedures

Initialize Initializes a Statistics object.

Finalize Finalizes a Statistics object.

Valid_State Returns false iff a Statistics object is in an invalid state.
Initialized Returns true iff a Statistics object has been initialized.
Operations

Add_Value Adds a value to the data set of the Statistics object.
Arithmetic_Mean Returns the arithmetic mean of the Statistics object.
Average Returns the arithmetic mean of the Statistics object.
Count Returns the number of values in the Statistics object.

Geometric_Mean
Harmonic_Mean

Returns the geometric mean of the Statistics object.
Returns the harmonic mean of the Statistics object.

Maximum Returns the maximum value of the Statistics object.
Mean Returns the arithmetic mean of the Statistics object.
Minimum Returns the minimum value of the Statistics object.
Name Returns the name of the Statistics object.

Output Writes out the Statistics object.

Standard _Deviation Returns the standard deviation of the Statistics object.
Sum Returns the sum or total of the Statistics object.
Total Returns the sum or total of the Statistics object.

Totally_Positive
Update_Global

Returns true if all the values in the Statistics object are positive.

Communicates with all processors to update the global information for the Statistics

object.

10.2. STATISTICS CLASS

Statistics public defined types:

Statistics type
Global_Arithmetic_Mean
Global_Count
Global_Geometric_Mean
Global_Harmonic_Mean
Global_Log_Sum
Global_Maximum
Global_Minimum
Global_Reciprocal_Sum
Global_Squared_Sum
Global_Standard_Deviation
Global_Sum
Global_Totally_Positive
Global_Updated
Initialized

Name
PE_Arithmetic_Mean
PE_Count
PE_Geometric_Mean
PE_Harmonic_Mean
PE_Log_Sum

PE_Maximum

PE_Minimum
PE_Reciprocal_Sum
PE_Squared_Sum
PE_Standard_Deviation
PE_Sum
PE_Totally_Positive

117

The global arithmetic mean.

The global number of items in the data set.

The global geometric mean.

The global harmonic mean.

The global sum of the log of the values.

The global maximum of the values.

The global minimum of the values.

The global sum of the reciprocal of the values.

The global sum of the squares of the values.

The global standard deviation.

The global sum of values.

True if all items in the data set on all PEs are positive.
Global update status.

Initialization status.

The name for this Statistics object.

The arithmetic mean on this PE.

The number of items in the data set on this PE.
The geometric mean on this PE.

The harmonic mean on this PE.

The sum of the log of the values on this PE.

The maximum of the values on this PE.

The minimum of the values on this PE.

The sum of the reciprocal of the values on this PE.
The sum of the squares of the values on this PE.
The standard deviation on this PE.

The sum of values on this PE.

True if all items in the data set on this PE are positive.

The Statistics Class code listing in § E.2 on page 472 contains additional documentation. The Statistics
Class also contains a Unit Test Program which is listed in § E.2.9 on page 489.

10.2.1

Initialize_Statistics Procedure

The Initialize Statistics procedure allocates and initializes a Statistics object.

Calling syntax:

call Initialize (Statistics, Name, status)

Input variables:
Statistics
Name

Output variables:

Statistics
status

The Statistics object to be initialized.
The name for the Statistics object.

The Statistics object has been allocated and initialized.
If present, the status variable is set to either ’Memory Error’ or ’Success’ de-

pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

118 CHAPTER 10. MATHEMATICS MODULE

Internal variables:

allocate_status Allocation Status.
consolidated_status Consolidated Status.

The Initialize Statistics code listing in § E.2.1 on page 474 contains additional documentation.

10.2.2 Finalize_Statistics Procedure

The Finalize Statistics procedure deallocates and finalizes a Statistics object.
Calling syntax:
call Finalize (Statistics, status)

Input variables:

Statistics The Statistics object to be finalized.

Output variables:

Statistics The Statistics object has been finalized and is no longer valid.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

consolidated_status Consolidated Status.
deallocate_status Deallocation Status vector.

The Finalize Statistics code listing in § E.2.2 on page 477 contains additional documentation.

10.2.3 Valid_State_Statistics Procedure

The Valid_State_Statistics procedure returns true iff the Statistics is in a valid state — that is, iff the Statistics
passes all of the valid state tests.

Calling syntax:
Logical = Valid_State(Statistics)

Input variables:

Statistics The Statistics to be checked.

Output variable:

Valid_State True iff the Statistics is in a valid state.

Internal variables:

Global_Mean_Range Global range of the mean.

10.2. STATISTICS CLASS 119

Global_Range Global range of the distribution.
PE_Mean_Range Range of the mean on this PE.
PE_Range Range of the distribution on this PE.

The Valid_State_Statistics code listing in § E.2.3 on page 478 contains additional documentation.

10.2.4 Initialized_Statistics Procedure

The Initialized Statistics procedure returns true iff the Statistics object has been initialized.
Calling syntax:
Logical = Initialized(Statistics)

Input variable:

Statistics The Statistics object to be examined.

Output variable:

Initialized True iff the Statistics object has been initialized.

The Initialized Statistics code listing in § E.2.4 on page 481 contains additional documentation.

10.2.5 Add_Value_Statistics Procedure

The Add_Value_Statistics procedure adds a new value to the Statistics object.
Calling syntax:
call Add_Value (Statistics, Value)

Input variables:

Statistics The Statistics object to be modified.
Value Value to be added to Statistics object.

Output variables:

Statistics The modified Statistics object.

Internal variables:

N Real version of PE_Count.

The Add_Value_Statistics code listing in § E.2.5 on page 481 contains additional documentation.

10.2.6 Get Value Statistics Functions

The Get Value Statistics functions return values from a Statistics object. Local or global values can be
returned by specifying the Global logical input variable.

120 CHAPTER 10. MATHEMATICS MODULE

Calling syntax:

Output = Arithmetic_Mean (Statistics, Global) ,
Output = Average (Statistics, Global) ,
Output = Count (Statistics, Global) ,
Output = Geometric_Mean (Statistics, Global) ,
Output = Harmonic_Mean (Statistics, Global) ,
Output = Maximum (Statistics, Global) ,
Output = Mean (Statistics, Global) ,
Output = Minimum (Statistics, Global) ,
Output = Name (Statistics) ,
Output = Standard_Deviation (Statistics, Global) ,
Qutput = Sum (Statistics, Global) ,
Output = Total (Statistics, Global) or
Output = Totally_Positive (Statistics, Global)

Mean and Average are alternate interface names for the Arithmetic Mean Procedure, and Total is an alternate
interface name for the Sum Procedure.

Input variables:

Statistics The Statistics object to be examined.
Global If present and true, the function does a global update and then returns the global
value. Otherwise, the local PE value is returned. [Optional]

Output variable:

Output For Name, returns a character variable containing the name assigned to the object
upon initialization. For Count, returns the integer number of values in the Statistics
object. For Totally Positive, returns a logical which is true only if all the values
are positive. For all other functions, returns a real variable with the named value
for the Statistics object. Note that the values returned by Geometric_ Mean and
Harmonic_Mean have no significance if Totally_Positive is false.

The Get Value Statistics code listing in § E.2.6 on page 483 contains additional documentation.

10.2.7 Output_Statistics Procedure

The Output_Statistics procedure writes out information from a Statistics object to the specified unit.
Calling syntax:
call Output (Statistics, Global, Verbose, Unit)

Input variables:

Statistics The Statistics object to be queried.

Global Global flag, defaults to false. If Global is not set to true, no global update is done
and whatever value is present on the IO_PE is used. [Optional]

Verbose Verbosity flag, defaults to false. [Optional]

Unit The logical unit for output, which defaults to 6. [Optional]

The Output_Statistics code listing in § E.2.7 on page 485 contains additional documentation.

10.2. STATISTICS CLASS 121

10.2.8 TUpdate_Global_Statistics Procedure

The Update_Global Statistics procedure does interprocessor communication to update the global values of
a Statistics object.

Calling syntax:
call Update_Global (Statistics)

Input variables:

Statistics The Statistics object to be globally updated.

Output variables:

Statistics The globally updated Statistics object.

Internal variables:

N Real version of Global_Count.

The Update_Global Statistics code listing in § E.2.8 on page 488 contains additional documentation.

122 CHAPTER 10. MATHEMATICS MODULE

Chapter 11

Parallel _Utilities Module

His narrative style was like parallel parking on a busy street: he proceeded in fits and starts,
backed up, edged forward, backed up, while other ideas zoomed past close at hand. — Melissa Fay

Greene

The Parallel Utilities module provides CESAR with utilities of a general nature which rely on parallel com-
munication for their operation.

The Parallel Utilities Module code listing in § F on page 493 contains additional documentation.

11.1 Timer Class

The Timer Class is used to keep track of run times in the CESAR Code Package. A Timer keeps track of
both CPU and Wall Clock times. The time between starting and stopping a Timer is referred to as a split
time. A Timer keeps statistics for split and total times, and for each processor in a parallel run.

Timer public procedures:

Fundamental procedures

Initialize
Finalize
Valid_State
Operations
Arithmetic_Mean
Average

Count
Geometric_Mean
Get_CPU_Time
Get_Wall_Clock_Time
Harmonic_Mean
Initialized
Maximum

Mean

Minimum
Julian_Day

Name

Output

Reset

Initializes a Timer object.
Finalizes a Timer object.
Returns false iff a Timer object is in an invalid state.

Returns the arithmetic mean of the Timer object.
Returns the arithmetic mean of the Timer object.
Returns the number of splits in the Timer object.
Returns the geometric mean of the Timer object.
Returns CPU time in seconds.

Returns Wall Clock time in seconds.

Returns the harmonic mean of the Timer object.
Returns true iff a Timer object has been initialized.
Returns the maximum value of the Timer object.
Returns the arithmetic mean of the Timer object.
Returns the minimum value of the Timer object.
Returns the Julian Day number for a given date.
Returns the name of the Timer object.

Writes out the Timer object.

Resets all the registers in a Timer object, returning it to a freshly initialized state.

123

124 CHAPTER 11. PARALLEL_UTILITIES MODULE

Standard_Deviation Returns the standard deviation of the Timer object.

Start Instructs a Timer object to begin timing.

Stop Instructs a Timer object to discontinue timing.

Sum Returns the sum or total of the Timer object.

Total Returns the sum or total of the Timer object.
Totally_Positive Returns true if all the times in the Timer object are positive.

Timer public defined types:

Timer type

CPU_Time Time object to track.
Initialized Initialization status.

Name The name for this Timer object.
Running Logical for Timer state.
Wall_Clock_Time Time object to track.

Time type

Start Initial time value.

Statistics Statistics for the time splits.

The Timer Class code listing in § F.1 on page 493 contains additional documentation. The Timer Class also
contains a Unit Test Program which is listed in § F.1.13 on page 515.

11.1.1 Initialize_Timer Procedure

The Initialize_Timer procedure allocates and initializes a Timer object.
Calling syntax:
call Initialize (Timer, Name, status)

Input variables:
Timer The Timer object to be initialized.
Name The name for the Timer object.
Output variables:

Timer The Timer object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.
consolidated_status Consolidated Status.

The Initialize_ Timer code listing in § F.1.1 on page 496 contains additional documentation.

11.1. TIMER CLASS 125

11.1.2 Finalize_Timer Procedure

The Finalize Timer procedure deallocates and finalizes a Timer object.
Calling syntax:
call Finalize (Timer, status)

Input variables:

Timer The Timer object to be finalized.

Output variables:

Timer The Timer object has been finalized and is no longer valid.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

consolidated_status Consolidated Status.
deallocate_status Deallocation Status vector.

The Finalize Timer code listing in § F.1.2 on page 498 contains additional documentation.

11.1.3 Valid_State_Timer Procedure

The Valid _State_Timer procedure returns true iff the Timer is in a valid state — that is, iff the Timer passes
all of the valid state tests.

Calling syntax:
Logical = Valid_State(Timer)

Input variables:

Timer The Timer to be checked.

Output variable:

Valid_State True iff the Timer is in a valid state.

Internal variables:

Variable Description. [Units]

The Valid_State_Timer code listing in § F.1.3 on page 499 contains additional documentation.

11.1.4 Initialized_Timer Procedure

The Initialized _Timer procedure returns true iff the Timer object has been initialized.

126

CHAPTER 11. PARA

Calling syntax:

Logical = Initialized(Timer)

Input variable:

Timer

The Timer object to be examined.

Output variable:

Initialized True iff the Timer object has been initialized.

LLEL_UTILITIES MODULE

The Initialized _Timer code listing in § F.1.4 on page 500 contains additional documentation.

11.1.5 Get Value Timer Functions

The Get Value Timer functions return values from a Timer object. Local or global values can be returned
by specifying the Global logical input variable. Note that if the Timer object is currently running, data
from the current timing is not included. Therefore, it is more meaningful to call these routines after calling

Stop_Timer.

Calling syntax:

Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output

Arithmetic_Mean (Timer, Clock, Global, Split)
Average (Timer, Clock, Global, Split)

Count (Timer, Clock, Global, Split)
Geometric_Mean (Timer, Clock, Global, Split)
Harmonic_Mean (Timer, Clock, Global, Split)
Maximum (Timer, Clock, Global, Split)

Mean (Timer, Clock, Global, Split)

Minimum (Timer, Clock, Global, Split)

Name (Timer)

Standard_Deviation (Timer, Clock, Global, Split)
Sum (Timer, Clock, Global, Split)

Total (Timer, Clock, Global, Split)
Totally_Positive (Timer, Clock, Global, Split)

b

or

Mean and Average are alternate interface names for the Arithmetic Mean Procedure, and Total is an alternate
interface name for the Sum Procedure.

Note that some combinations of options will return values that, while correct, have little useful meaning. For
example, the function Total(Timer, Clock=‘‘Wall_Clock’’, Global=.true., Split=.false.) will
return the total wall-clock time summed over all the processors, whereas a more meaningful value would be
the maximum wall-clock time over all the processors, given by Maximum(Timer, Clock=‘‘Wall_Clock’’,
Global=.true., Split=.false.)

Input variables:

Timer
Clock
Global

The Timer object to be examined.
Should have a value of “CPU” or “Wall_Clock”. Default is

“CPU”. [Optional]

If present and true, the function does a global update and then returns the global

value. Otherwise, the local PE value is returned. [Optional]

11.1. TIMER CLASS 127

Split If present and true, the function returns values based on the individual split times,
that is, for all the times that the timer was started and stopped. This can be either
local (all the splits on a PE) or global (all the splits on all the PEs). If Split is false
or absent, the function returns values based on the total times on each PE. If both
Split and Global are false, the function returns values based on the single entry of
the total time on the local PE. [Optional]

Output variables:

Output For Name, returns a character variable containing the name assigned to the object
upon initialization. For Count, returns the integer number of values in the Timer
object (i.e. the number of splits). For Totally Positive, returns a logical which
is true only if all the values are positive. For all other functions, returns a real
variable with the named value for the Timer object. Note that the values returned
by Geometric_ Mean and Harmonic_Mean have no significance if Totally Positive is
false.

The Get Value Timer code listing in § F.1.5 on page 501 contains additional documentation.

11.1.6 Get_CPU_Time Procedure
The Get_CPU_Time procedure returns the current value of the CPU time counter in seconds. It is intended
to be used internally to the Timer Class, but is made public in case it is needed elsewhere.

Note: on an old Sun compiler (Sun WorkShop 6 update 2 Fortran 95 6.2 2001/05/15), the CPU_TIME call
returns the total time for the parent process, so interpret results carefully. Some runs led me to suspect that
CPU_TIME returns Wall Clock Time on Suns — not sure about this.

Calling syntax:
Real = Get_CPU_Time ()

Output variable:

Get_CPU_Time The current value of the CPU time counter [seconds].

The Get_CPU_Time code listing in § F.1.6 on page 503 contains additional documentation.

11.1.7 Get_Wall Clock Time Procedure
The Get_Wall_Clock_Time procedure returns the current value of the Wall Clock time counter in seconds.
It is intended to be used internally to the Timer Class, but is made public in case it is needed elsewhere.

The returned value is actually the number of seconds, down to the millisecond, since the midnight at the
beginning of 4714 BC/11/24 (-4713 CE/11/24). This is the beginning date of the Julian Day counter
according to the Gregorian calendar, which is 38 days before the beginning date of the Julian Day counter
according to the Julian calendar (4713 BC/01/01 or -4712 CE/01/01).

Calling syntax:
Real = Get_Wall_Clock_Time ()

Output variable:

Get_Wall_Clock_Time The current value of the Wall Clock time counter [seconds].

128 CHAPTER 11. PARALLEL_UTILITIES MODULE

The Get_Wall_Clock_Time code listing in § F.1.7 on page 504 contains additional documentation.

11.1.8 Julian_Day Procedure

The Julian Day procedure calculates the Julian Day for a given Year, Month and Day for a specific calendar
(Julian or Gregorian).

Days in a Year

The Romans originally counted years ab urbe condita (a.u.c.), that is, “from the founding of the city (Rome)”,
posited as April 21, 753 BC. However, common usage numbered years by starting at one every time a new
Caesar’s reign began. Days were added and subtracted from time to time to keep the calendar on track
with the season, which led to problems with planning and abuses for political purposes. (To calculate the
equivalent a.u.c. year, add 753 to an AD year or subtract a BC year from 754. This is a rough estimate and
may be off by a year.)

To correct problems with this calendar, Julius Caesar instituted a new calendar in 709 a.u.c. (45 BC). This
calendar, called the Julian calendar, had years of 365 days and leap years of 366 days every fourth year.
Months had a constant number of days, with a new month being added to refer to Julius Caesar himself
(July). The year of 45 BC is often called the “year of confusion”, as 90 days were added to the year to
realign with the seasons.

The Julian calendar was a distinct improvement, but its year length of 365.25 days differed from the true year
by about 11 minutes. Two possible values for the true year length are the vernal equinox year, 365.2424 days,
and the tropical year, 365.24219 days. The discrepancy in the Julian calendar accumulates to a day roughly
every 131 years.

Over the centuries the equinoxes and solstices migrated from their former places in the calendar, which
caused problems in the Roman Catholic Church because the determination of the date of Easter was affected.
Eventually, Pope Gregory XIII issued a papal bull establishing what is now called the Gregorian calendar.
The Gregorian calendar modified the addition of leap days, such that a century year (divisible by 100) was
only counted as a leap year if it was also divisible by 400. The Gregorian year length of 365.2425 days is
much closer to the true year length, differing by somewhere between 8 and 27 seconds (depending on which
true year is used). An entire day of error accumulates in either 3,226 or 10,000 years.

Adoption of the Gregorian calendar required dropping some days to realign the equinoxes and solstices.
The first adoption of the Gregorian calendar was by the Catholic countries of Italy, Poland, Portugal, and
Spain. They dropped 10 days, following 4 October 1582 immediately with 15 October 1582. Other Catholic
countries followed suit, Protestant countries changed over the next two hundred years, and Greek Orthodox
countries (Russia, Romania, Bulgaria, Turkey) did not change until the early 1900s. Great Britain and
colonies (including American colonies) dropped 11 days when they adopted the Gregorian calendar, following
2 September 1752 with 14 September 1752. (Unix users can see that this fact is incorporated into the cal
program by typing “% cal 9 1752”.)

Extending a calendar before the time when it was adopted is referred to as the “proleptic” version of that
calendar.

Year Numbering Systems

The designation “A.D.” is an abbreviation of “Anni Domini Nostri Jesu Christi”, i.e., “in the year of Our
Lord Jesus Christ”, and “B.C.” signifies “Before Christ”. There was no year zero in this system — that is, the
year 1 BC was followed by 1 AD. A more religiously-neutral system replaces A.D. with C.E. (for Christian
Era) and B.C. with B.C.E. (Before Christian Era), and leaves the numbering unchanged.

A third system is called the Common Era calendar, which uses the designation C.E. only. It includes a zero
year and negative years, so that 2000 AD = 2000 CE (Christian Era) = 2000 CE (Common Era), and 2 BC
= 2 BCE (Before Christian Era) = -1 CE (Common Era).

Julian Days

11.1. TIMER CLASS

129

Table 11.18: Chronological Julian Day numbers for some representative dates.

Date (BC/AD) Date (CE) Julian Day Julian Day
(Julian Calendar) | (Gregorian Calendar)

4714 BC/11/24 | -4713 CE/11/24 -38 0
4713 BC/01/01 | -4712 CE/01/01 0 38
753 BC/04/21 | -752 CE/04/21 1446501 1446509
2 BC/10/30 | -1 CE/10/30 1720995 1720997

1 BC/01/01 0 CE/01/01 1721058 1721060

1 AD/01/01 1 CE/01/01 1721424 1721426
200 AD/02/28 | 200 CE/02/28 1794166 1794167
200 AD/02/29 | 200 CE/02/29 1794167 1794168
200 AD/03/01 | 200 CE/03/01 1794168 1794168
300 AD/02/28 300 CE/02/28 1830691 1830691
300 AD/02/29 300 CE/02/29 1830692 1830692
300 AD/03/01 300 CE/03/01 1830693 1830692
1582 AD/10/04 | 1582 CE/10/04 2299160 2299150
1582 AD/10/14 | 1582 CE/10/14 2299170 2299160
1752 AD/09/02 | 1752 CE/09/02 2361221 2361210
1752 AD/09/13 | 1752 CE/09/13 2361232 2361221
1858 AD/11/16 | 1858 CE/11/16 2400012 2400000
1968 AD/05/23 | 1968 CE/05/23 2440013 2440000
1995 AD/10/09 | 1995 CE/10/09 2450013 2450000
2000 AD/01/01 | 2000 CE/01/01 2451558 2451545
2132 AD/08/31 | 2132 CE/08/31 2500014 2500000

Julian Day numbers had their beginnings in a numbering system that was designed by Joseph Scaliger in
1583. It is sometimes erroneously stated that the system was named to honor his father, Julius Caesar
Scaliger, but Scaliger himself wrote "We have termed it Julian because it fits the Julian year ...”. His
system was based on a 7980-year cycle which started on 1 January 4713 BC in the proleptic Julian calendar.

The astronomer John W. F. Herschel extended this idea to a system which numbered all the days consecu-
tively starting at noon on 1 January -4712 CE (Julian). Noon was used so that the day number would not
change in the middle of a night observation. Chronological Julian Day numbers were subsequently defined
to start at midnight at the start of 1 January -4712 CE (Julian).

Some representative Julian Day numbers are given in Table 11.1.8.

Seehttp://www.hermetic.ch/cal_stud/jdn.htm http://www.hermetic.ch/cal_stud/cal_art.htm http:
//penelope.uchicago.edu/~grout/encyclopaedia_romana/calendar/consuls.html, http://en.wikipedia.
org/wiki/Ab_urbe_condita,http://en.wikipedia.org/wiki/Julian_calendar,http://en.wikipedia.
org/wiki/Gregorian_calendar,http://en.wikipedia.org/wiki/Julian_day,and http://astro.nmsu.
edu/~1lhuber/leaphist.html for more detailed discussions.

Calling syntax:
integer = Julian_Day(Year, Month, Day, Calendar, Debug)

Input variables:

Year Year number, with negative numbers for BC and positive numbers for AD. There
is no year zero. This procedure will give accurate results (corresponding to the
proleptic Julian and Gregorian calendars) from 4713 BC onward. [years]

Month Month number. [1-12]

Day Day number. [1-31]
Character variable specifying whether to use the Julian or Gregorian calendar (Gre-
gorian is the default). [optional]

Calendar

130

CHAPTER 11. PARALLEL_UTILITIES MODULE

Debug Debug toggle, needed to turn off very slow checking during 1000s of repeated calls
in the parallel versions of the unit test. (.true. is the default). [optional]

Output variables:

Julian_Day The chronological Julian Day number for the input date. [days]

Internal variables:

Julian_Day_Constant

Julian_Month

Julian_Year

Shifted_Julian_Year

The number of days between the zero date of the Julian Day numbering system (1
January -4712 CE) and the zero date of this Julian Day calculation (30 October -1
CE). [days]

A month number which has been adjusted for ease of calculation. Ranges between
4 and 15.

The year, with negative values shifted by one so that there is a ”zero year” (there
was no zero year between 1 BC and 1 AD). This is also known as the Common Era
(CE) year. [years]

The Julian year shifted by 8000 years for ease of calculation of leap days. [years]

The Julian Day code listing in § F.1.8 on page 505 contains additional documentation.

11.1.9 Output_Timer Procedure

The Output_Timer procedure writes out information from a Timer object to the specified unit.

Calling syntax:

call Output (Timer, Global, Verbose, Unit)

Input variables:

Timer The Timer object to be queried.

Global Global flag, defaults to false. If Global is not set to true, no global update is done
and whatever value is present on the IO_PE is used. [Optional]

Verbose Verbosity flag, defaults to false. [Optional]

Unit The logical unit for output, which defaults to 6. [Optional]

The Output_Timer code listing in § F.1.9 on page 508 contains additional documentation.

11.1.10 Reset_Timer Procedure

The Reset_Timer procedure resets the Timer registers. A Timer that has been reset is identical to one that

has just been initialized.

Calling syntax:

call Reset_Timer (Timer)

Input variables:

Timer The Timer object to be reset.

11.1. TIMER CLASS 131

Output variables:

Timer The Timer object that has been reset.

The Reset_Timer code listing in § F.1.10 on page 513 contains additional documentation.

11.1.11 Start_Timer Procedure

The Start_Timer procedure starts the Timer running. The Timer registers are not reset to zero.
Calling syntax:
call Start_Timer (Timer)

Input variables:

Timer The Timer object to be started.

Output variables:

Timer The Timer object that is now running.

The Start_Timer code listing in § F.1.11 on page 513 contains additional documentation.

11.1.12 Stop_Timer Procedure

The Stop_Timer procedure stops the Timer. The Timer registers are not reset to zero.
Calling syntax:
call Stop_Timer (Timer)

Input variables:

Timer The Timer object to be stopped.

Output variables:

Timer The Timer object that has been stopped.

The Stop_Timer code listing in § F.1.12 on page 514 contains additional documentation.

132 CHAPTER 11. PARALLEL_UTILITIES MODULE

Chapter 12

Linear_Algebra Module

That fondness for science, ... has encouraged me to compose a short work on calculating by al-
jabr and al-mugabala, confining it to what is easiest and most useful in arithmetic, such as men
constantly require in cases of inheritance, legacies, partition, lawsuits, and trade, and in all their
dealings with one another, or where the measuring of lands, the digging of canals, geometrical
computations, and other objects of various sorts and kinds are concerned. — from the algebra
treatise Hisab al-jabr w’al-mugabala, the most famous work of Abu Ja’far Muhammad ibn Musa
Al-Khwarizmi (c. 780 — c. 850) [al-jabr means “restoring”, referring to the process of moving
a subtracted quantity to the other side of an equation; al-mugabala is “comparing” and refers to
subtracting equal quantities from both sides of an equation.]

The Linear_Algebra Module contains classes to support the manipulation and solution of linear algebra prob-
lems for the C&SAR Code Package. Several matrix classes (with different storage formats) and a Mathematic
Vector class are included. A Solver class is used to drive the solution of linear equations using both external
packages and solvers included within CESAR.

The Linear_Algebra Module code listing in § G on page 527 contains additional documentation.

12.1 Mathematic_Vector Class

The Mathematic_Vector Class is used to describe a Mathematic Vector in the C&ESAR Code Package. A
Mathematic_Vector differs from a Distributed_Vector in several ways:

e A Mathematic_Vector has operations which allow it to calculate various mathematic functions (norms,
averages, etc.).
e A Mathematic_Vector is used with a matrix class to define a matvec operation.
e A Distributed_Vector can interoperate with other CESAR parallel data structures (Assembled_Vector,
Overlapped_Vector, Collected_Array).
Note that a Mathematic_Vector contains a Distributed_Vector and a vector of Overlapped_Vectors which it
uses for matvecs.

The Mathematic_Vector methods section in § 16.1 on page 187 describes the methods used in the Mathe-
matic_Vector Class.

Mathematic_Vector public procedures:

133

134

CHAPTER 12. LINEAR_ ALGEBRA MODULE

Fundamental procedures

Initialize Initializes a Mathematic_Vector object.

Finalize Finalizes a Mathematic_Vector object.

Valid_State Returns false iff a Mathematic_Vector object is in an invalid state.

Initialized Returns true iff a Mathematic_Vector object has been initialized.

Operations

Average Returns the arithmetic mean of the Mathematic_Vector object.

Add_Values Increments the values of a Mathematic_Vector object.

DotProduct Returns the global dot product of two Mathematic_Vector objects.

Duplicate Makes an exact copy of a Mathematic_Vector (except for the internal DV’s and
OV’s, which will be generated if needed). This procedure is also useful when a
compatible Mathematic_Vector is needed.

Get_Values Returns the values for a Mathematic_Vector object (also has an assignment inter-

Infinity_Norm
Length_PE
Length_Total
Locus

face).

Returns the infinity norm of the Mathematic_Vector object.
Returns the length on this PE of the Mathematic_Vector object.
Returns the total length (all PEs) of the Mathematic_Vector object.
Returns the locus of the Mathematic_Vector object.

Maximum Returns the maximum of the Mathematic_Vector object.

Mean Returns the mean value of the Mathematic_Vector object.
Minimum Returns the minimum of the Mathematic_Vector object.

Name Returns the name of the Mathematic_Vector object.

Norm Returns the two norm of the Mathematic_Vector object.

One_Norm Returns the one norm of the Mathematic_Vector object.
Orthogonal Returns true if the two Mathematic_Vector objects are orthogonal.
Output Writes out the Mathematic_Vector object.

P_Norm Returns the P-norm of the Mathematic_Vector object.

Two_Norm Returns the two norm of the Mathematic_Vector object.

Set_Not_Up_to_Date

Puts a Mathematic Vector into a “not up-to-date” state. Can be used externally
to force recalculation of norms, extrema, etc.

Set_Values Sets the values for a Mathematic_Vector object.

Sum Returns the sum of the Mathematic_Vector object.

Total Returns the sum of the Mathematic_Vector object.

Update_DV Updates the Distributed Vector inside of a Mathematic_Vector object.

Mathematic_Vector public defined types:

Mathematic_Vector type

Average

Average_is_Updated

Dimensionality
DV
Infinity_Norm

Global average of the Mathematic Vector.

Updated? toggle for Average.

Number of dimensions for the Mathematic Vector (always unity).
Distributed Vector that is used for matvecs.

Infinity norm of the Mathematic Vector.

Infinity_Norm_is_Updated Updated? toggle for Infinity_Norm.

Initialized Initialization status.

Maximum Global maximum of the Mathematic Vector.

Maximum_is_Updated Updated? toggle for Maximum.

Minimum Global minimum of the Mathematic Vector.

Minimum_is_Updated Updated? toggle for Minimum.

Name The name for this variable (especially useful in a vector of Mathematic Vectors).

One_Norm One norm of the Mathematic Vector.
One_Norm_is_Updated Updated? toggle for One_Norm.

ov A vector of Overlapped Vectors that is used for matvecs.
DV_is_Updated Updated? toggle for DV.

12.1. MATHEMATIC_VECTOR CLASS 135

P_Norm
P_Norm_Exponent
P_Norm_is_Updated
Structure

Sum

Sum_is_Updated
Two_Norm
Two_Norm_is_Updated
Values

P norm of the Mathematic Vector.

Exponent used in taking the P norm.

Updated? toggle for P_Norm.

Basic data structure for the Mathematic Vector.
Global sum of the Mathematic Vector.
Updated? toggle for Sum.

Two norm of the Mathematic Vector.

Updated? toggle for Two_Norm.

Values for the Mathematic Vector.

Mathematic_Vector public variables:

Number_of_0QVs_in_an_MV

A parameter specifying the number of Overlapped_Vector objects in a Mathematic_-
Vector object. This number limits the number of different matrices that MatVecs
can be done with quickly. For example, if a Mathematic_Vector object is to be
multipied by three matrices, all with the same Column _Structure but with differ-
ent Data_Indices (Columns arrays), then the set up for all three can be stored as
long as Number_of_0Vs_in_an_ MV is equal to or greater than three. Otherwise,
multiplication can still be done, but set up phases will have to be repeated.

The Mathematic_Vector Class code listing in § G.1 on page 527 contains additional documentation. The
Mathematic_Vector Class also contains a Unit Test Program which is listed in § G.1.15 on page 557.

12.1.1 Initialize_Mathematic_Vector Procedure

The Initialize Mathematic_Vector procedure allocates and initializes a Mathematic_Vector object.

Calling syntax:

call Initialize (MV, Structure, Name, status)

Input variables:

MV The Mathematic_Vector object to be initialized.

Structure The Base_Structure giving the distribution for the Mathematic_Vector.

Name The name for this variable (especially useful in a vector of Mathematic Vectors).
[Optional]

Output variables:

MV The Mathematic_Vector object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-

pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.
consolidated_status Consolidated Status.

The Initialize Mathematic_Vector code listing in § G.1.1 on page 532 contains additional documentation.

136 CHAPTER 12. LINEAR_ ALGEBRA MODULE

12.1.2 Duplicate_Mathematic_Vector Procedure

The Duplicate_Mathematic_Vector procedure duplicates a Mathematic Vector — that is, it initializes a new
Mathematic Vector with the same structure as the old Mathematic Vector, and copies the internals. Note
that the internal structures associated with executing MatVecs (i.e. the DV and the OVs) are not duplicated.

Calling syntax:
call Duplicate (MV_duplicate, MV_source, status)

Input variables:

MV_source The Mathematic_Vector to be duplicated.

Output variables:

MV_duplicate The Mathematic_Vector object is now a copy of the MV _source Mathematic Vector.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

The Duplicate_ Mathematic_Vector code listing in § G.1.2 on page 534 contains additional documentation.

12.1.3 Finalize_ Mathematic_Vector Procedure

The Finalize_Mathematic_Vector procedure deallocates and finalizes a Mathematic_Vector object.
Calling syntax:
call Finalize (MV, status)

Input variables:

MV The Mathematic_Vector object to be finalized.

Output variables:

MV The Mathematic_Vector object has been finalized and is no longer valid.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

consolidated_status Consolidated Status.
deallocate_status Deallocation Status mathematic_vector.
i Loop variable.

The Finalize Mathematic_Vector code listing in § G.1.3 on page 535 contains additional documentation.

12.1. MATHEMATIC_VECTOR CLASS 137

12.1.4 Valid_State_Mathematic_Vector Procedure

The Valid_State_Mathematic_Vector procedure returns true iff the Mathematic_Vector is in a valid state —
that is, iff the Mathematic_Vector passes all of the valid state tests.

Calling syntax:
Logical = Valid_State(MV)

Input variables:

MV The Mathematic_Vector to be checked.

Output variable:

Valid_State True iff the Mathematic_Vector is in a valid state.

The Valid_State_Mathematic_Vector code listing in § G.1.4 on page 537 contains additional documentation.

12.1.5 Initialized_Mathematic_Vector Procedure
The Initialized Mathematic_Vector procedure returns true iff the Mathematic_Vector object has been initial-
ized.
Calling syntax:
Logical = Initialized(MV)

Input variable:

MV The Mathematic_Vector object to be examined.

Output variable:

Initialized True iff the Mathematic_Vector object has been initialized.

The Initialized_ Mathematic_Vector code listing in § G.1.5 on page 539 contains additional documentation.

12.1.6 Add_Values_Mathematic_Vector Procedure

The Add_Values Mathematic_Vector procedure increments the values for the Mathematic Vector by the
specified vector of value. Note that if the single value form of this procedure is used, then the same number
of procedure calls must take place on every processor — this is required by internal verification calls that use
global communication. If a different number of values are to be added on each processor, then the vector
form should be used.

Calling syntax:

call Add_Values (MV, Values) ,
call Add_Values (MV, Values, Rows, Global) or
call Add_Values (MV, Value, Row, Global)

Input variable:

138 CHAPTER 12. LINEAR_ ALGEBRA MODULE

Values A vector of values to be added to the Mathematic_Vector object. If the Rows
variable is not present, Values must be the same size as the Mathematic_Vector.
Otherwise, Values must have a size smaller than or equal to the size of the Mathe-
matic_Vector.

Rows An integer vector of rows for the Values vector. [optional]

Global A toggle between using global or local (on this PE) indices for the Rows variable.
Default is true (use global). [optional]

Value A single value to be added to the Mathematic_Vector object. The Row variable
must be present for this form of the procedure.
Row The row index for the Value variable.

Input/Output variable:

MV The Mathematic_Vector object to be incremented.

The Add_Values_Mathematic_Vector code listing in § G.1.6 on page 540 contains additional documentation.

12.1.7 DotProduct_Mathematic_Vector Procedure

The DotProduct procedure calculates the global dot product of two Mathematic Vectors.

Note that I would rather call this routine “Dot_Product”, but the F90 standard does not allow underscores
in defined operator names (i.e. “.Dot_Product.” is not allowed).

Calling syntax:

MV1 .DotProduct. MV2 or
DotProduct (MV1, MV2)

Output

Output

Input variables:

MV1, MV2 Two Mathematic_Vector objects to be dotted.

Output variable:

DotProduct Scalar result of taking the global dot product of the two Mathematic Vectors.

The DotProduct_Mathematic_Vector code listing in § G.1.7 on page 543 contains additional documentation.

12.1.8 Get Value Mathematic_Vector Functions

The Get_Value MV functions return values from a Mathematic_Vector object. These operations require
global communication (except Get-Name MV, Get_Length PE and Get_Length_Total), but if called more
than once without modifying the object, no global communication is done for the second call.

Calling syntax:

12.1. MATHEMATIC_VECTOR CLASS 139

Output = Average (MV) ,
Output = Infinity_Norm (MV) ,
Output = Length_PE (MV) ,
Output = Length_Total (MV) ,
Output = Locus (MV) ,
Output = Maximum (MV) ,
Output = Mean (MV) ,
Qutput = Minimum (MV) ,
Output = Name (MV) ,
Output = Norm (MV) ,
Output = One_Norm (MV) ,
Output = P_Norm (MV, P) ,
Output = Sum (MV))
Output = Total (MV) or
Output = Two_Norm (MV)

Mean is an alternate interface name for the Average Procedure, Norm is an alternate interface name for the
Two_Norm Procedure, and Total is an alternate interface name for the Sum Procedure.

Input variables:

MV The Mathematic_Vector object to be examined.
P P_Norm exponent. This optional argument is only available in P_Norm.

Output variable:

Output For Name and Locus, returns a character variable containing the name or locus
assigned to the object upon initialization. For Length_PE and Length_Total, returns
an integer variable containing the appropriate length of the Mathematic_Vector
object. For all other functions, returns a real variable with the named value for the
Mathematic_Vector object.

The Get Value Mathematic_Vector code listing in § G.1.8 on page 544 contains additional documentation.

12.1.9 Get_Values_Mathematic_Vector Procedure

The Get_Values_Mathematic_Vector procedure accesses the values from a Mathematic Vector.
Calling syntax:

Values = MV or
call Get_Values (Values, MV)

Input variable:

Values The bare naked vector of values from the Mathematic_Vector object. Values must
be the same size as the Mathematic_Vector.

Input/Output variable:

MV The Mathematic_Vector object to be accessed.

The Get_Values Mathematic_Vector code listing in § G.1.9 on page 548 contains additional documentation.

140 CHAPTER 12. LINEAR_ ALGEBRA MODULE

12.1.10 Orthogonal Mathematic_Vector Procedure

The Orthogonal procedure calculates whether or not two Mathematic Vectors are orthogonal.
Calling syntax:

Logical = MVl .0Orthogonal. MV2 or
Logical = Orthogonal (MV1, MV2)

Input variables:

MV1, MV2 Two Mathematic_Vector objects to be dotted.

Output variable:

Orthogonal Logical which is true when the two Mathematic Vectors are orthogonal.

The Orthogonal Mathematic_Vector code listing in § G.1.10 on page 548 contains additional documentation.

12.1.11 Output_Mathematic_Vector Procedure

The Output_Mathematic_Vector procedure writes out a section of a Mathematic Vector to the specified unit.
Calling syntax:
call Output (MV, First, Last, Unit, Indent)

Input variables:

MV The Mathematic_Vector object to be queried.

First The first location to be output. [Optional]

Last The last location to be output. [Optional]

Unit The logical unit for output, which defaults to 6. [Optional]
Indent Number of indentation characters. [Optional]

The Output_Mathematic_Vector code listing in § G.1.11 on page 549 contains additional documentation.

12.1.12 Set_Not_Up_to_Date Mathematic_Vector Procedure

The Set_Not_Up_to_Date_Mathematic_Vector procedure puts a Mathematic Vector into a “not up-to-date”
state. That is, it unsets the values for all of the updated? variables in the Mathematic Vector. It is mainly
used internally to the Mathematic Vector class, but could also be used externally to force recalculation of
norms, extrema, etc.

Calling syntax:
call Set_Not_Up_to_Date (MV)

Input/Output variable:

MV The Mathematic_Vector object to be set.

The Set_Not_Up_to_Date_Mathematic_Vector code listing in § G.1.12 on page 552 contains additional docu-
mentation.

12.2. ELL_MATRIX CLASS 141

12.1.13 Set_Values_Mathematic_Vector Procedure

The Set_Values_Mathematic_Vector procedure sets the values for the Mathematic Vector. Note that if the
single value form of this procedure is used, then the same number of procedure calls must take place on
every processor — this is required by internal verification calls that use global communication. If a different
number of values are to be set on each processor, then the vector form should be used.

Calling syntax:

MV = Values R
call Set_Values (MV, Values) ,
call Set_Values (MV, Values, Rows, Global) or
call Set_Values (MV, Value, Row, Global)

Input variable:

Values A vector of values for the Mathematic_Vector object. If the Rows variable is not
present, Values must be the same size as the Mathematic_Vector. Otherwise, Values
must have a size smaller than or equal to the size of the Mathematic_Vector.

Rows An integer vector of rows for the Values vector. [optional]

Global A toggle between using global or local (on this PE) indices for the Rows variable.
Default is true (use global). [optional]

Value A single value for the Mathematic_Vector object. The Row variable must be present
for this form of the procedure.
Row The row index for the Value variable.

Input/Output variable:

MV The Mathematic_Vector object to be set.

The Set_Values_Mathematic_Vector code listing in § G.1.13 on page 553 contains additional documentation.

12.1.14 Update_DV_Mathematic_Vector Procedure

The Update_DV_Mathematic_Vector procedure updates the Distributed Vector inside of a Mathematic Vector
from the Values objects. If the DV is already updated, no work is done.

Calling syntax:
call Update_DV (MV)

Input/Output variable:

MV The Mathematic_Vector object to be set.

The Update_DV_Mathematic_Vector code listing in § G.1.14 on page 556 contains additional documentation.

12.2 ELL Matrix Class

The ELL_Matrix Class is used to describe a matrix in the C&SAR Code Package. The storage format is
ELL, a common storage format originally used by the ELLPACK package!. In this storage format, two

I\http://www.cs.purdue.edu/ellpack/

142 CHAPTER 12. LINEAR_ ALGEBRA MODULE

rectangular arrays are used to store the matrix. The arrays have the same number of rows as the original
matrix, but only have as many columns as the maximum number of nonzeros on a row of the original matrix.
One of the arrays holds the matrix entries, and the other array holds the column numbers from the original
matrix.

As an example, this original matrix:

123 000
045060
.. | 7080 90
Full Matrix = 08 007 6 (12.1)
0 05 000
[00 40 30
which has a maximum number of nonzeros per row of 3, would be stored as
1 2 3] 1 2 3
4 5 6 2 3 5
7 89 1 3 5
Values = 8 7 6 , Columns = 9 5 6 (12.2)
5 0 0 300
4 3 0 | 350

This storage format is most efficient when every row in the original matrix has the same number of nonzeros.
It is somewhat easier to work with than the compressed sparse row (CSR) format, but it can use more
memory if the matrix has an uneven number of nonzeros per row.

In addition to this, the ELL_Matrix Class is a parallel data structure. The row dimension in the Values and
Columns arrays is distributed across the processors.

The ELL_Matrix methods section in § 16.2 on page 188 describes the methods used in the ELL_Matrix Class.
ELL_Matrix public procedures:

Fundamental procedures

Initialize Initializes an ELL_Matrix object.

Finalize Finalizes an ELL_Matrix object.

Valid_State Returns false iff an ELL_Matrix object is in an invalid state.

Initialized Returns true iff an ELL_Matrix object has been initialized.

Operations

Add_Values Increments the values of an ELL_Matrix object.

Average Returns the arithmetic mean of the ELL_Matrix object.

Frobenius_Norm Returns the Frobenius norm of the ELL_Matrix object.

Get_Columns Returns the column locations for an ELL_Matrix object (also has an assignment
interface).

Get_Values Returns the values for an ELL_Matrix object (also has an assignment interface).

Infinity_Norm Returns the infinity norm of the ELL_Matrix object.

MatVec Returns the global matrix-vector product of an ELL Matrix object and a Mathe-
matic_Vector object.

Max_Nonzeros Returns the maximum number of nonzeros of the ELL_Matrix object (the array
storage dimension for the columns).

Maximum Returns the maximum of the ELL_Matrix object.

Mean Returns the mean value of the ELL_Matrix object.

Minimum Returns the minimum of the ELL_Matrix object.

Name Returns the name of the ELL_Matrix object.

Norm Returns the Frobenius norm of the ELL Matrix object.

NColumns Returns the number of columns of the ELL_Matrix object.

12.2. ELL_MATRIX CLASS 143

NRows_PE
NRows_Total
One_Norm
Output

Read

Read_Harwell_Boeing

Residual
Set_Not_Up_to_Date

Set_Values

Sum

Total
Two_Norm_Estimate
Two_Norm_Range

Returns the number of rows on this PE of the ELL Matrix object.

Returns the total number of rows of the ELL_Matrix object.

Returns the one norm of the ELL_Matrix object.

Writes out the ELL_Matrix object.

Reads in an ELL_Matrix object from a Harwell-Boeing formatted file. Also reads
in Mathematic_Vector objects from the file.

Reads in an ELL_Matrix object from a Harwell-Boeing formatted file. Also reads
in Mathematic_Vector objects from the file.

Calculates the residual vector (r = Az — b) for a linear system.

Puts an ELL Matrix into a “not up-to-date” state. Can be used externally to force
recalculation of norms, extrema, etc.

Sets the values for an ELL_Matrix object.

Returns the sum of the ELL Matrix object.

Returns the sum of the ELL_Matrix object.

Returns an estimate of the two norm of the ELL_Matrix object.

Returns the range of possible values for the two norm of the ELL_Matrix object.

ELL_Matrix public defined types:

ELL_Matrix type
Average
Average_is_Updated
Column_Structure
Columns
Dimensionality
Index
Index_is_Updated
Index_Match_Number
Frobenius_Norm

Frobenius_Norm_is_Updated

Infinity_Norm

Infinity_Norm_is_Updated

Initialized
Max_Nonzeros
Maximum
Maximum_is_Updated
Minimum
Minimum_is_Updated
Name

One_Norm
One_Norm_is_Updated
ov

Row_Structure

Sum
Sum_is_Updated
Two_Norm_Estimate

Two_Norm_is_Updated
Two_Norm_Range
Values

Global average of the ELL Matrix.

Updated? toggle for Average.

Column base structure for the ELL Matrix.

Array of column numbers for the ELL Matrix.

Number of dimensions for the ELL Matrix (always unity).
Data Index that is used for matvecs.

Updated? toggle for Index.

Index Match Number that is used for matvecs.

Frobenius norm of the ELL Matrix.

Updated? toggle for Frobenius_Norm.

Infinity norm of the ELL Matrix.

Updated? toggle for Infinity Norm.

Initialization status.

Maximum number of nonzero columns on a row in the matrix.
Global maximum of the ELL Matrix.

Updated? toggle for Maximum.

Global minimum of the ELL Matrix.

Updated? toggle for Minimum.

The name for this variable (especially useful in a vector of ELL Matrices).
One norm of the ELL Matrix.

Updated? toggle for One_Norm.

A vector of Overlapped Vectors that is used for matvecs.
Row base structure for the ELL Matrix.

Global sum of the ELL Matrix.

Updated? toggle for Sum.

An estimate of the two norm of the ELL Matrix, taken to be the midpoint of the

range.
Updated? toggle for Two_Norm.

The possible range of the two norm of the ELL Matrix.
Values for the ELL Matrix.

The ELL_Matrix Class code listing in § G.2 on page 560 contains additional documentation. The ELL_Matrix
Class also contains a Unit Test Program which is listed in § G.2.15 on page 599.

144 CHAPTER 12. LINEAR_ ALGEBRA MODULE

12.2.1 Initialize_ ELL_Matrix Procedure

The Initialize ELL_Matrix procedure allocates and initializes an ELL_Matrix object.
Calling syntax:
call Initialize (ELLM, Max_Nonzeros, Row_Structure, Column_Structure, Name, status)

Input variables:

ELLM The ELL_Matrix object to be initialized.

Max_Nonzeros The maximum number of nonzero elements per row.

Row_Structure The Base_Structure giving the row distribution for the ELL_Matrix.
Column_Structure The Base_Structure giving the column distribution for the ELL_Matrix.
Name The name for this variable. [Optional]

Output variables:

ELLM The ELL_Matrix object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.
consolidated_status Consolidated Status.

The Initialize ELL_Matrix code listing in § G.2.1 on page 564 contains additional documentation.

12.2.2 Finalize ELL_Matrix Procedure

The Finalize ELL_Matrix procedure deallocates and finalizes an ELL_Matrix object.
Calling syntax:
call Finalize (ELLM, status)

Input variables:

ELLM The ELL_Matrix object to be finalized.

Output variables:

ELLM The ELL_Matrix object has been finalized and is no longer valid.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

consolidated_status Consolidated Status.
deallocate_status Deallocation Status ell_ matrix.
i Loop variable.

12.2. ELL_MATRIX CLASS 145

The Finalize ELL_Matrix code listing in § G.2.2 on page 566 contains additional documentation.

12.2.3 Valid_State_ELL_Matrix Procedure

The Valid_State_ELL_Matrix procedure returns true iff the ELL_Matrix is in a valid state — that is, iff the
ELL_Matrix passes all of the valid state tests.

Calling syntax:
Logical = Valid_State(ELLM)

Input variables:

ELLM The ELL_Matrix to be checked.

Output variable:

Valid_State True iff the ELL_Matrix is in a valid state.

The Valid_State_ELL_Matrix code listing in § G.2.3 on page 568 contains additional documentation.

12.2.4 Initialized _ELL_Matrix Procedure

The Initialized ELL_Matrix procedure returns true iff the ELL_Matrix object has been initialized.
Calling syntax:
Logical = Initialized(ELLM)

Input variable:

ELLM The ELL_Matrix object to be examined.

Output variable:

Initialized True iff the ELL_Matrix object has been initialized.

The Initialized ELL_Matrix code listing in § G.2.4 on page 570 contains additional documentation.

12.2.5 Add_Values_ELL_Matrix Procedure

The Add_Values ELL_Matrix procedure increments the values for an ELL Matrix by the specified array of
values. It may be called two different ways.

The single value form adds to a single matrix entry. If this form is used, then the same number of procedure
calls must take place on every processor — this is required by internal verification calls that use global
communication. If a different number of values are to be add on each processor, then one of the other calling
forms should be used.

The array form, with the plural nomenclature, can be used to add to selected values in the ELL Matrix.
Only the rows and columns listed in the Rows and Columns vectors are modified.

Calling syntax:

146 CHAPTER 12. LINEAR_ ALGEBRA MODULE

call Add_Values (ELLM, Values, Rows, Columns, Global) or
call Add_Values (ELLM, Value, Row, Column, Global)

Input variable:

Values An array of values to be added to the ELL_Matrix object. Values must have a size
smaller than or equal to the size of the ELL_Matrix.

Rows An integer vector of rows to be incremented. This vector may be sized smaller than
the row size of the ELL_Matrix object.

Columns An array of columns for the ELL_Matrix object. Columns must have a size smaller
than or equal to the size of the ELL_Matrix.

Global A toggle between using global or local (on this PE) indices for the Rows variables.
Default is true (use global). Note that the Columns variables are always global.
[optional]

Value A single value to be added to the ELL_Matrix object. The Row and Column
variables must be present for this form of the procedure.

Row The row index for the Value variable.

Column The column index for the Value variable.

Input/Output variable:

ELLM The ELL_Matrix object to be incremented.

The Add-Values ELL_Matrix code listing in § G.2.5 on page 571 contains additional documentation.

12.2.6 Get Value ELL_Matrix Functions

The Get_Value ELLM functions return values from an ELL_Matrix object. These operations require global
communication (except Get_Max Nonzeros, Get_Name ELLM, Get_NColumns, Get_NRows_PE and Get._-
NRows_Total), but if called more than once without modifying the object, no global communication is done
for the second call.

Calling syntax:

Output = Average (ELLM) ,
Output = Frobenius_Norm (ELLM) ,
Output = Infinity_Norm (ELLM) ,
Output = Max_Nonzeros (ELLM) ,
Output = Maximum (ELLM) ,
Output = Mean (ELLM) ,
Output = Minimum (ELLM) ,
Output = Name (ELLM) ,
Output = Norm (ELLM) ,
Output = NColumns (ELLM) ,
Output = NRows_PE (ELLM) ,
Output = NRows_Total (ELLM) ,
Output = One_Norm (ELLM) ,
Output = Sum (ELLM) ,
Output = Total (ELLM) ,
Output = Two_Norm_Estimate (ELLM) or
Output = Two_Norm_Range (ELLM)

Mean is an alternate interface name for the Average Procedure, Norm is an alternate interface name for the
Frobenius_Norm Procedure, and Total is an alternate interface name for the Sum Procedure.

12.2. ELL_MATRIX CLASS 147

The Two Norm is problematic and is not calculated exactly by C&SAR currently. However, the Two_Norm -
Range function returns limits on the possible values of the Two Norm, and the Two_Norm_Estimate function
returns the midpoint of this range.

Input variables:

ELLM The ELL_Matrix object to be examined.

Output variable:

Output For Name, returns a character variable containing the name assigned to the object
upon initialization. For Max_Nonzeros, NColumns, NRows_PE and NRows_Total,
returns an integer variable with the requested number. For all other functions,
returns a real variable with the named value for the ELL_Matrix object.

The Get Value ELL_Matrix code listing in § G.2.6 on page 574 contains additional documentation.

12.2.7 Get_Columns_ELL_Matrix Procedure

The Get_Columns_ELL_Matrix procedure accesses the column locations from an ELL Matrix.
Calling syntax:

Columns = ELLM or
call Get_Columns (Columns, ELLM)

Input variable:
Columns The bare naked array of columns from the ELL_Matrix object. Columns must be
the same size as the ELL_Matrix.
Input/Output variable:

ELLM The ELL_Matrix object to be accessed.

The Get_Columns ELL_Matrix code listing in § G.2.7 on page 578 contains additional documentation.

12.2.8 Get_Values_ELL_Matrix Procedure

The Get_Values_ELL_Matrix procedure accesses the values from an ELL Matrix.
Calling syntax:

Values = ELLM or
call Get_Values (Values, ELLM)

Input variable:
Values The bare naked array of values from the ELL_Matrix object. Values must be the
same size as the ELL_Matrix.
Input/Output variable:

ELLM The ELL_Matrix object to be accessed.

148 CHAPTER 12. LINEAR_ ALGEBRA MODULE

The Get_Values_ELL_Matrix code listing in § G.2.8 on page 579 contains additional documentation.

12.2.9 MatVec_ ELL _Matrix Procedure

The MatVec procedure calculates the global matrix-vector product of an ELL Matrix and a Mathematic
Vector. It has some “smart” features:
e Overlapped_Vectors are used to store off-processor elements between MatVecs.

e MatVecs between a matrix (that may have changed) and a vector that hasn’t changed do not do any
global communication.

e The above is true for up to four (current number, could be expanded) different matrices, with different
sparsity patterns.
Calling syntax:
call MatVec (ELLM, MV_in, MV_out)

Input variables:

ELLM An ELL Matrix object to be multiplied.

MV_in A Mathematic_Vector object to be multiplied. The Structure of the Mathematic_-
Vector must be the same as the Column_Structure of the ELL_Matrix.

MV_out Mathematic_Vector object for output, but must have a Valid_State and the same
Structure as the Row_Structure of ELLM on input.

Output variable:

MV_out Mathematic_Vector object result of multiplying the ELL Matrix object by the
Mathematic_Vector object. The resultant Mathematic_Vector will have the same
Structure as the Row_Structure of the ELL_Matrix.

The MatVec_ELL_Matrix code listing in § G.2.9 on page 579 contains additional documentation.

12.2.10 Output_ELL_Matrix Procedure

The Output_ELL_Matrix procedure writes out a section of a ELL Matrix to the specified unit.
Calling syntax:
call Output (ELLM, Row_First, Row_Last, Unit, Indent)

Input variables:

ELLM The ELL_Matrix object to be queried.

Row_First The first row location to be output. [Optional]

Row_Last The last row location to be output. [Optional]

Unit The logical unit for output, which defaults to 6. [Optional]
Indent Number of indentation characters. [Optional]

The Output_ELL_Matrix code listing in § G.2.10 on page 582 contains additional documentation.

12.2. ELL_MATRIX CLASS 149

12.2.11 Read_Harwell Boeing ELL_Matrix Procedure

The Read _Harwell Boeing ELL_Matrix procedure reads and initializes an ELL_Matrix object from a Harwell-
Boeing formatted file. It will also read in and initialize a Mathematic_Vector object for a right-hand side
vector, an initial guess vector and/or an exact solution vector.

Calling syntax:
call Read_Harwell_Boeing (ELLM, RHS_MV, Solution_MV, Guess_MV, Row_Structure, Column_Structure, Uni

Input variables:

Unit The logical unit for input, which defaults to 5. [Optional]

Output variables:

ELLM The ELL_Matrix object to be read in and initialized.

RHS_MV The right-hand side Mathematic_Vector object to be read in. [Optional]
Solution_MV The exact solution Mathematic_Vector object to be read in. [Optional]

Guess_MV The initial guess Mathematic_Vector object to be read in. [Optional]
Row_Structure The Base_Structure giving the row distribution for the ELL_Matrix.
Column_Structure The Base_Structure giving the column distribution for the ELL_Matrix.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-

pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.
consolidated_status Consolidated Status.

The Read_Harwell Boeing ELL _Matrix code listing in § G.2.11 on page 586 contains additional documenta-
tion.

12.2.12 Residual ELL_Matrix Procedure

The Residual procedure calculates the global residual vector of a linear system represented by an ELL Matrix
and a two Mathematic Vectors.
Calling syntax:

call Residual (Residual_MV, A_ELLM, X_MV, B_MV)

Input variables:

A_ELLM An ELL_Matrix object to be multiplied.

X_MV A Mathematic_Vector object to be multiplied. The Structure of the Mathematic_-
Vector must be the same as the Column Structure of the ELL_Matrix.
B_MV Mathematic_Vector object to be subtracted from the MatVec. The Structure of the

Mathematic_Vector must be the same as the Row_Structure of A_ELLM.

Output variable:

150 CHAPTER 12. LINEAR_ ALGEBRA MODULE

Residual _MV Mathematic_Vector object result of multiplying A_ ELLM by X_MV and subtracting
B_MYV. The resultant Mathematic_Vector will have the same Structure as the Row_-
Structure of the ELL_Matrix.

The Residual ELL_Matrix code listing in § G.2.12 on page 593 contains additional documentation.

12.2.13 Set_Not_Up_to_Date_ELL_Matrix Procedure

The Set_Not_Up_to_Date_ ELL_Matrix procedure puts an ELL Matrix into a “not up-to-date” state. That
is, it unsets the values for all of the updated? variables in the ELL Matrix. It is mainly used internally to
the ELL Matrix class, but could also be used externally to force recalculation of norms, extrema, etc.

Calling syntax:
call Set_Not_Up_to_Date (ELLM)

Input/Output variable:

ELLM The ELL_Matrix object to be set.

The Set_Not_Up_to_Date_ELL _Matrix code listing in § G.2.13 on page 594 contains additional documentation.

12.2.14 Set_Values_ELL_Matrix Procedure

The Set_Values_ELL_Matrix procedure sets the values for the ELL Matrix. It may be called three different
ways.

The single value form replaces a single matrix entry. If this form is used, then the same number of procedure
calls must take place on every processor — this is required by internal verification calls that use global
communication. If a different number of values are to be set on each processor, then one of the other calling
forms should be used.

The array form, without the Rows variable, can be used to replace the entire contents of the ELL Matrix.
The Values and Columns variables must be exactly the same size as the ELL Matrix variables with the same
name.

The array form, with the Rows variable, can be used to replace selected values in the ELL Matrix. Only the
rows listed in the Rows vector are modified.

Calling syntax:

call Set_Values (ELLM, Values, Columns) ,
call Set_Values (ELLM, Values, Rows, Columns, Global) or
call Set_Values (ELLM, Value, Row, Column, Global)

Input variable:
Values An array of values for the ELL_Matrix object. If the Rows variable is not present,

Values must be the same size as the ELL_Matrix. Otherwise, Values must have a
size smaller than or equal to the size of the ELL_Matrix.

Rows An integer vector of rows to be replaced. This vector may be sized smaller than the
row size of the ELL_Matrix object. [optional]
Columns An array of columns for the ELL_Matrix object. If the Rows variable is not present,

Columns must be the same size as the ELL_Matrix. Otherwise, Columns must have
a size smaller than or equal to the size of the ELL_Matrix.

12.3. SOLVER CLASS 151

Global A toggle between using global or local (on this PE) indices for the Rows variables.
Default is true (use global). Note that the Columns variables are always global.
[optional]

Value A single value for the ELL_Matrix object. The Row and Column variables must be
present for this form of the procedure.

Row The row index for the Value variable.

Column The column index for the Value variable.

Input/Output variable:

ELLM The ELL_Matrix object to be set.

The Set_Values_ ELL_Matrix code listing in § G.2.14 on page 594 contains additional documentation.

12.3 Solver Class

The Solver Class is used to describe a Solver in the C&ESAR Code Package. A Solver interacts with the other
Solver class by blah blah blah.
The Solver methods section in § 16.3 on page 189 describes the methods used in the Solver Class.

Solver public procedures:

Fundamental procedures

Initialize Initializes a Solver object.

Finalize Finalizes a Solver object.

Valid_State Returns false iff a Solver object is in an invalid state.
Initialized Returns true iff a Solver object has been initialized.
Operations

Procedure Description.

Name Returns the name of the Solver object.

Output Writes out the Solver object.

Solver public defined types:

solver type
Variable Description. [Units]

solver type

Variable Description. [Units]
Initialized Initialization status.

Solver public variables:

variable type
Variable Description. [Units]

variable type
Variable Description. [Units]

The Solver Class code listing in § G.3 on page 605 contains additional documentation. The Solver Class also

152 CHAPTER 12. LINEAR_ ALGEBRA MODULE

contains a Unit Test Program which is listed in § G.3.8 on page 618.

12.3.1 Initialize_Solver Procedure

The Initialize Solver procedure allocates and initializes a Solver object.
Calling syntax:
call Initialize (Solver, Package, status)

Input variables:

Solver The Solver object to be initialized.
Package The linear algebra package to call.

Output variables:

Solver The Solver object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.
consolidated_status Consolidated Status.

The Initialize Solver code listing in § G.3.1 on page 607 contains additional documentation.

12.3.2 Finalize_Solver Procedure

The Finalize Solver procedure deallocates and finalizes a Solver object.
Calling syntax:
call Finalize (Solver, status)

Input variables:

Solver The Solver object to be finalized.

Output variables:

Solver The Solver object has been finalized and is no longer valid.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

consolidated_status Consolidated Status.
deallocate_status Deallocation Status vector.

12.3. SOLVER CLASS 153

The Finalize Solver code listing in § G.3.2 on page 608 contains additional documentation.

12.3.3 Valid_State_Solver Procedure

The Valid_State_Solver procedure returns true iff the Solver is in a valid state — that is, iff the Solver passes
all of the valid state tests.

Calling syntax:
Logical = Valid_State(Solver)

Input variables:

Solver The Solver to be checked.

Output variable:

Valid_State True iff the Solver is in a valid state.

The Valid_State_Solver code listing in § G.3.3 on page 610 contains additional documentation.

12.3.4 Initialized_Solver Procedure

The Initialized Solver procedure returns true iff the Solver object has been initialized.
Calling syntax:
Logical = Initialized(Solver)

Input variable:

Solver The Solver object to be examined.

Output variable:

Initialized True iff the Solver object has been initialized.

The Initialized _Solver code listing in § G.3.4 on page 611 contains additional documentation.

12.3.5 Set_Solver_Variable Procedure

The Set_Solver_Variable procedure sets a Solver internal variable.
Calling syntax:
call Set (Solver, Variable, Value)

Input variables:

Solver The Solver object to be set.

154 CHAPTER 12. LINEAR_ ALGEBRA MODULE

Variable The variable within the Solver object to be set. Valid variables, their types and
descriptions are:

Epsilon real Solver solution tolerance.
Maximum Iterations | integer For iterative solvers, the maximum number of it-
erations allowed.
Stopping_Test character | The stopping test. Currently the only stopping
test available is ¢ r—/—Db i Eps’.
LAMG _levout integer The output level variable for the LAMG package.
Value The value to set the variable to, which is required to be the proper type (real,

integer, character, logical) for a given variable.

Output variables:

Solver Modified Solver object.

The Set_Solver_Variable code listing in § G.3.5 on page 611 contains additional documentation.

12.3.6 Convert ELL to LAMG Procedure

The Convert_ELL_to_ LAMG procedure converts an ELL Matrix object to the LAMG matrix storage format.
This function is only available if CESAR has been compiled with LAMG.
Calling syntax:

call Convert (LAMG_Matrix, ELLM, LAMG_Communicator, LAMG_Options, status)

Input variables:

ELLM The ELL_Matrix object to be converted.
LAMG_Communicator The Communicator object for the LAMG package.
LAMG_Options The Options object for the LAMG package.

Output variables:

LAMG_Matrix The matrix in LAMG format.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

Status variables

allocate_status Allocation Status.
consolidated_status Consolidated Status.
LAMG_Status LAMG status.

Matrix variables

NNonzeros_PE Number of nonzeros on this PE.
Columns_BNA Matrix columns bare naked array.
Values_BNA Matrix values bare naked array.
LAMG_BR_Matrix LAMG block-row format matrix.

Counter variables
BR_Location Location in the block-row matrix.

12.3. SOLVER CLASS 155

ELL_Location Location in the ELL matrix.
row Row loop counter.

The Convert_ELL_to_.LAMG code listing in § G.3.6 on page 612 contains additional documentation.

12.3.7 Solve Procedure

The Solve procedure sets a Solver internal variable.
Calling syntax:
call Set (Solver, Variable, Value)

Input variables:

Subtype variables
Variable Description. [Units]

Subtype variables
Variable Description. [Units]

Output variables:

Variable Description. [Units]

Internal variables:

Variable Description. [Units]

The Solve code listing in § G.3.7 on page 615 contains additional documentation.

156 CHAPTER 12. LINEAR_ ALGEBRA MODULE

Chapter 13

Equation Module

13.1 Monomial Class

The Monomial Class is used to describe a Monomial in the CESAR Code Package. A Monomial interacts
with the other Monomial class by blah blah blah.

The Monomial methods section in § 7?7 on page ?7 describes the methods used in the Monomial Class.

Monomial public procedures:

Fundamental procedures

Initialize Initializes a Monomial object.

Finalize Finalizes a Monomial object.

Valid_State Returns false iff a Monomial object is in an invalid state.
Initialized Returns true iff a Monomial object has been initialized.
Operations

Add_to_Matrix_Equation_Monomial Description.

Name Returns the name of the Monomial object.

Output Writes out the Monomial object.

Monomial public defined types:

monomial type
Variable Description. [Units]

monomial type

Variable Description. [Units]
Initialized Initialization status.

Monomial public variables:

variable type
Variable Description. [Units]

variable type
Variable Description. [Units]

157

158 CHAPTER 13. EQUATION MODULE

The Monomial Class code listing in § H.1 on page 621 contains additional documentation. The Monomial
Class also contains a Unit Test Program which is listed in § H.1.8 on page 633.

13.1.1 Initialize_Monomial Procedure

The Initialize Monomial procedure allocates and initializes a Monomial object.
Calling syntax:

call Initialize (Monomial, Coefficient, Exponent, Phi_MV, Locus, Mesh, Name, status)

Input variables:

Subtype variables

Monomial The Monomial object to be initialized.

Coefficient A vector of coefficents for the monomial.

Exponent The degree (exponent) of the monomial.

Phi_MV An Mathematic Vector of the independent variable that this monomial is based on
(past time step or iterate value).

Locus The location for the monomial (e.g. Cells, Nodes or Faces)

Mesh The Mesh object that this monomial is based on.

Name The name for this variable. [Optional]

Output variables:

Monomial The Monomial object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.
consolidated_status Consolidated Status.

The Initialize Monomial code listing in § H.1.1 on page 623 contains additional documentation.

13.1.2 Finalize_ Monomial Procedure

The Finalize_ Monomial procedure deallocates and finalizes a Monomial object.
Calling syntax:
call Finalize (Monomial, status)

Input variables:

Monomial The Monomial object to be finalized.

Output variables:

Monomial The Monomial object has been finalized and is no longer valid.

13.1. MONOMIAL CLASS 159

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

Variable Description. [Units]
consolidated_status Consolidated Status.
deallocate_status Deallocation Status vector.

The Finalize Monomial code listing in § H.1.2 on page 625 contains additional documentation.

13.1.3 Valid_State_Monomial Procedure

The Valid_State_ Monomial procedure returns true iff the Monomial is in a valid state — that is, iff the
Monomial passes all of the valid state tests.

Calling syntax:
Logical = Valid_State(Monomial)

Input variables:

Monomial The Monomial to be checked.

Output variable:

Valid_State True iff the Monomial is in a valid state.

Internal variables:

Variable Description. [Units]

The Valid_State_Monomial code listing in § H.1.3 on page 626 contains additional documentation.

13.1.4 Initialized_Monomial Procedure

The Initialized Monomial procedure returns true iff the Monomial object has been initialized.
Calling syntax:
Logical = Initialized(Monomial)

Input variable:

Monomial The Monomial object to be examined.

Output variable:

Initialized True iff the Monomial object has been initialized.

160 CHAPTER 13. EQUATION MODULE

The Initialized Monomial code listing in § H.1.4 on page 627 contains additional documentation.

13.1.5 Add_to_Matrix_Equation_Monomial Procedure

The Add_to_Matrix Equation_ Monomial procedure adds the linearized version of the Monomial Term to
the specified matrix equation. It currently assumes that there is a one-to-one correspondence between the
Monomial locus (e.g. Cells) and the equation and variable numbering, and furthermore assumes that the
locus is Cells.

Calling syntax:
call Add_to_Matrix_Equation (Monomial, ELLM, RHS_MV)

Input variables:

Monomial The Monomial Term to be added.
ELLM The ELL Matrix to be incremented.
RHS_MV The right-hand side Mathematic Vector to be incremented.

Output variables:

ELLM The ELL Matrix that has been incremented.
RHS_MV The right-hand side Mathematic Vector that has been incremented.

Internal variables:

Matrix_Columns Columns for the added matrix values.
Matrix_Rows Rows for the added matrix values.
Matrix_Values Calculated values to be added to the matrix or vector.

The Add_to_Matrix Equation_Monomial code listing in § H.1.5 on page 628 contains additional documenta-
tion.

13.1.6 Get Value Monomial Functions

The Get_Value_Monomial functions return values from a Monomial object.

Calling syntax:

Output = Locus (Monomial) or
Output = Name (Monomial)

Input variables:

Monomial The Monomial object to be examined.

Output variable:

Output Returns a character variable containing the name or locus assigned to the object
upon initialization.

The Get Value Monomial code listing in § H.1.6 on page 630 contains additional documentation.

13.2. ORTHO_DIFFUSION CLASS 161

13.1.7 Output_Monomial Procedure

The Output_Monomial procedure writes out a section of a Mathematic Vector to the specified unit.
Calling syntax:
call Output (Monomial, First, Last, Unit, Indent, status)

Input variables:

Monomial The Monomial object to be queried.

First The first location to be output. [Optional]

Last The last location to be output. [Optional]

Unit The logical unit for output, which defaults to 6. [Optional]
Indent Number of indentation characters. [Optional]

Output variables:

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

Coefficient_MV Temporary Mathematic Vector for the Coefficient.
Phi_MV Temporary Mathematic Vector for Phi.
allocate_status Allocation Status.

consolidated_status Consolidated Status.

The Output_Monomial code listing in § H.1.7 on page 631 contains additional documentation.

13.2 Ortho_Diffusion Class

The Ortho_Diffusion Class is used to describe an Orthogonal Diffusion equation term in the C&ESAR Code
Package.

The Ortho_Diffusion methods section in § ?? on page ?? describes the methods used in the Ortho_Diffusion
Class.

Ortho_Diffusion public procedures:

Fundamental procedures

Initialize Initializes an Ortho_Diffusion object.

Finalize Finalizes an Ortho_Diffusion object.

Valid_State Returns false iff an Ortho_Diffusion object is in an invalid state.

Initialized Returns true iff an Ortho_Diffusion object has been initialized.

Operations

Add_to_Matrix_Equation Adds the linearized version of the Ortho_Diffusion Term to the specified matrix
equation.

Evaluate_Gradient_Cells Evaluates the gradient of Phi at the cell centers using the linearization of the Ortho_-
Diffusion Term.

Locus Returns the locus of the Ortho_Diffusion object.

Name Returns the name of the Ortho_Diffusion object.

Output Writes out the Ortho_Diffusion object.

162 CHAPTER 13. EQUATION MODULE

Ortho_Diffusion public defined types:

Ortho_Diffusion type
Boundary_Condition The boundary condition flag for each face of each cell.

Coefficient The diffusion coefficient, defined on the cells for now.

Initialized Initialization status.

Locus Evaluation locus.

Mesh Mesh that this Ortho_Diffusion object is defined on.

Name The name for this variable.

Phi The independent variable at the linearization value (past time step or iterate).
Phi_BC The boundary condition constant for each face of each cell.

Structure Locus Base_Structure.

Ortho_Diffusion private procedures:
Get_Harmonic_Diffusion_Coef Returns the harmonic diffusion coefficients for each face of each cell.

The Ortho_Diffusion Class code listing in § H.2 on page 635 contains additional documentation. The Ortho_-
Diffusion Class also contains a Unit Test Program which is listed in § H.2.10 on page 658.

13.2.1 Initialize_Ortho_Diffusion Procedure

The Initialize_Ortho_Diffusion procedure allocates and initializes an Ortho_Diffusion Term object.
Calling syntax:
call Initialize (Diff_Term, Coefficient, Phi_MV, Locus, Mesh, Name, Extrapolation, status)

Input variables:

Subtype variables

Diff_Term The Ortho_Diffusion object to be initialized.

Coefficient A vector of diffusion coefficents.

Phi_MV An Mathematic Vector of the independent variable that this Ortho_Diffusion object
is based on (past time step or iterate value).

Locus The location for the Ortho_Diffusion Term (e.g. Cells, Nodes or Faces)

Mesh The Mesh object that this Ortho_Diffusion Term is based on.

Name The name for this variable. [Optional]

Extrapolation A factor used in the source and vacuum boundary conditions, which effectively sets
the extrapolation distance to Coeflicient/Extrapolation. [Optional, default is 1/2]

Output variables:

Diff_Term The Ortho_Diffusion object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.
consolidated_status Consolidated Status.

13.2. ORTHO_DIFFUSION CLASS 163

The Initialize_Ortho_Diffusion code listing in § H.2.1 on page 638 contains additional documentation.

13.2.2 Finalize_Ortho_Diffusion Procedure

The Finalize Ortho_Diffusion procedure deallocates and finalizes an Ortho_Diffusion object.
Calling syntax:
call Finalize (Diff_Term, status)

Input variables:

Diff_Term The Ortho_Diffusion Term object to be finalized.

Output variables:

Diff_Term The Ortho_Diffusion object has been finalized and is no longer valid.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

Variable Description. [Units]
consolidated_status Consolidated Status.
deallocate_status Deallocation Status vector.

The Finalize Ortho_Diffusion code listing in § H.2.2 on page 640 contains additional documentation.

13.2.3 Valid_State_Ortho_Diffusion Procedure

The Valid_State_Ortho_Diffusion procedure returns true iff the Ortho_Diffusion Term is in a valid state —
that is, iff the Ortho_Diffusion Term passes all of the valid state tests.

Calling syntax:
Logical = Valid_State(Diff_Term)

Input variables:

Diff_Term The Ortho_Diffusion Term to be checked.

Output variable:

Valid_State True iff the Ortho_Diffusion Term is in a valid state.

The Valid_State_Ortho_Diffusion code listing in § H.2.3 on page 642 contains additional documentation.

13.2.4 Initialized_Ortho_Diffusion Procedure

The Initialized_Ortho_Diffusion procedure returns true iff the Ortho_Diffusion Term object has been initial-
ized.

164 CHAPTER 13. EQUATION MODULE

Calling syntax:
Logical = Initialized(Diff_Term)

Input variable:

Diff_Term The Ortho_Diffusion Term object to be examined.

Output variable:

Initialized True iff the Ortho_Diffusion Term object has been initialized.

The Initialized_Ortho_Diffusion code listing in § H.2.4 on page 643 contains additional documentation.

13.2.5 Add_to_Matrix_Equation_Ortho_Diffusion Procedure

The Add_to_Matrix_Equation_Ortho_Diffusion procedure adds the linearized version of the Ortho_Diffusion
Term to the specified matrix equation. It currently assumes that there is a one-to-one correspondence
between the Ortho_Diffusion locus (e.g. Cells) and the equation and variable numbering, and furthermore
assumes that the locus is Cells.

Calling syntax:
call Add_to_Matrix_Equation (Diff_Term, ELLM, RHS_MV)

Input variables:

Diff_Term The Ortho_Diffusion Term to be added.
ELLM The ELL Matrix to be incremented.
RHS_MV The right-hand side Mathematic Vector to be incremented.
Output variables:
ELLM The ELL Matrix that has been incremented.
RHS_MV The right-hand side Mathematic Vector that has been incremented.

Internal variables:

Matrix_Columns Columns for the added matrix values.
Matrix_Rows Rows for the added matrix values.
Matrix_Values Calculated values to be added to the matrix or vector.

The Add_to_Matrix_Equation_Ortho_Diffusion code listing in § H.2.5 on page 643 contains additional docu-
mentation.

13.2.6 Evaluate_Gradient_Cells_Ortho_Diffusion Procedure
The Evaluate_Gradient_Cells_Ortho_Diffusion procedure evaluates the gradient of Phi at the cell centers
using the specified Ortho_Diffusion Term.
Calling syntax:
call Evaluate_Gradient_Cells (Diff_Term, Phi_MV, Grad_Cells)

13.2. ORTHO_DIFFUSION CLASS 165

Input variables:

Diff_Term The Ortho_Diffusion Term to be evaluated.

Phi_MV The Phi Mathematic Vector to use in the evaluation.
Output variables:

Grad_Cells The gradient of Phi vector evaluated at the cell centers.

Internal variable:

Grad_dot_N_Faces_of_Cells The gradient of Phi dotted with the unit normal at each face of each cell.

The Evaluate_Gradient_Cells_Ortho_Diffusion code listing in § H.2.6 on page 648 contains additional docu-
mentation.

13.2.7 Get_Harmonic_Diffusion_Coef Ortho_Diffusion Procedure

The Get_Harmonic_Diffusion_Coef_Ortho_Diffusion procedure calculates the harmonic average of the diffusion
coeflicient at each face of each cell.
Calling syntax:

call Get_Harmonic_Diffusion_Coef (Harmonic_Diffusion_Coef_F_of_C, Diff_Term)

Input variables:

Diff_Term The Ortho_Diffusion Term to be queried.

Output variables:
Harmonic_Diffusion_Coef_F_of_C The harmonic average diffusion coeflicient evaluated at each face of each cell on thi

PE.

The Get_Harmonic Diffusion_Coef_Ortho_Diffusion code listing in § H.2.7 on page 652 contains additional
documentation.

13.2.8 Get Value Ortho_Diffusion Functions

The Get_Value Ortho_Diffusion functions return values from an Ortho_Diffusion Term object.
Calling syntax:

Output = Locus (Diff_Term) or
OQutput = Name (Diff_Term)

Input variables:

Diff_Term The Ortho_Diffusion Term object to be examined.

Output variable:

166 CHAPTER 13. EQUATION MODULE

Output Returns a character variable containing the name or locus assigned to the object
upon initialization.

The Get Value Ortho_Diffusion code listing in § H.2.8 on page 654 contains additional documentation.

13.2.9 Output_Ortho_Diffusion Procedure

The Output_Ortho_Diffusion procedure writes out a section of a Ortho_Diffusion object to the specified unit.
Calling syntax:
call Qutput (Diff_Term, First, Last, Unit, Indent, status)

Input variables:

Diff_Term The Ortho_Diffusion object to be queried.

First The first location to be output. [Optional]

Last The last location to be output. [Optional]

Unit The logical unit for output, which defaults to 6. [Optional]
Indent Number of indentation characters. [Optional]

Output variables:

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

Coefficient MV Temporary Mathematic Vector for the Coefficient.
Phi_MV Temporary Mathematic Vector for Phi.
allocate_status Allocation Status.

consolidated_status Consolidated Status.

The Output_Ortho_Diffusion code listing in § H.2.9 on page 655 contains additional documentation.

Chapter 14

Mesh Module

14.1 Multi Mesh Class

The Multi_Mesh Class is used to describe a mesh in the C&SAR Code Package.

The following is incomplete documentation — or rather documentation in the middle of being written.

Dims Uniformity Orthogonality Structure

W NNDNDNNNDNDNNNMDNMNNNMNMNNNNMNDMNNNMNNMNNMNNNMNNRERRRRPRR R B2

Uniform

Uniform

Uniform

Nonuniform
Nonuniform
Nonuniform
Nonuniform
Nonuniform
Nonuniform
Uniform

Uniform

Nonuniform
Nonuniform
Nonuniform
Nonuniform
Uniform

Uniform

Nonuniform
Nonuniform
Nonuniform
Nonuniform
Nonuniform
Nonuniform
Nonuniform
Nonuniform
Nonuniform
Nonuniform
Nonuniform
Nonuniform
Uniform

Orthogonal
Orthogonal
Orthogonal
Orthogonal
Orthogonal
Orthogonal
Orthogonal
Orthogonal
Orthogonal
Orthogonal
Orthogonal
Orthogonal
Orthogonal
Nonorthogonal
Nonorthogonal
Orthogonal
Orthogonal
Orthogonal
Orthogonal
Nonorthogonal
Nonorthogonal
Nonorthogonal
Nonorthogonal
Nonorthogonal
Nonorthogonal
Nonorthogonal
Nonorthogonal
Nonorthogonal
Nonorthogonal
Orthogonal

Structured
Structured
Structured
Structured
Structured
Structured
Unstructured
Unstructured
Unstructured
Structured
Structured
Structured
Structured
Structured
Structured
Structured
Structured
Structured
Structured
Structured
Structured
Unstructured
Unstructured
Unstructured
Unstructured
Unstructured
Unstructured
Unstructured
Unstructured
Structured

AMR

no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
yes
yes
yes
yes
yes
yes
no
no
yes
yes
no
no
no
no
no

167

Cell-Shape

Segmented
Segmented
Segmented
Segmented
Segmented
Segmented
Segmented
Segmented
Segmented
Quadrilateral
Quadrilateral
Quadrilateral
Quadrilateral
Quadrilateral
Quadrilateral
Quadrilateral
Quadrilateral
Quadrilateral
Quadrilateral
Quadrilateral
Quadrilateral
Quadrilateral
Quadrilateral
Quadrilateral
Quadrilateral
Triangular
Triangular
Polygonal
Polygonal
Hexahedral

Geometry

x-Cartesian
r-Cylindrical
r-Spherical
x-Cartesian
r-Cylindrical
r-Spherical
x-Cartesian
r-Cylindrical
r-Spherical
xy-Cartesian
rz-Cylindrical
xy-Cartesian
rz-Cylindrical
xy-Cartesian
rz-Cylindrical
xy-Cartesian
rz-Cylindrical
xy-Cartesian
rz-Cylindrical
xy-Cartesian
rz-Cylindrical
xy-Cartesian
rz-Cylindrical
xy-Cartesian
rz-Cylindrical
xy-Cartesian
rz-Cylindrical
xy-Cartesian
rz-Cylindrical
xyz-Cartesian

168 CHAPTER 14. MESH MODULE
3 Nonuniform Orthogonal Structured no Hexahedral xyz-Cartesian
3 Nonuniform Nonorthogonal Structured no Hexahedral xyz-Cartesian
3 Uniform Orthogonal Structured yes Hexahedral xyz-Cartesian
3 Nonuniform Orthogonal Structured yes Hexahedral xyz-Cartesian
3 Nonuniform Nonorthogonal Structured yes Hexahedral xyz-Cartesian
3 Nonuniform Nonorthogonal Unstructured no Hexahedral xyz-Cartesian
3 Nonuniform Nonorthogonal Unstructured yes Hexahedral xyz-Cartesian
3 Nonuniform Nonorthogonal Unstructured no Tetrahedral xyz-Cartesian
3 Nonuniform Nonorthogonal Unstructured no Polyhedral xyz-Cartesian
In general, treat the mesh as:

* Nonuniform Nonorthogonal Unstructured * * if-check

where *-values are mostly handled inside the parallel data structures.

Implications:

Uniform meshes must be structured.
1-D meshes must be orthogonal.
2-D means '"not spherical".

Mesh Nomenclature

A mesh consists of a collection of spatial locations or points, called nodes, that are connected in various ways
to define distinct spatial volumes, called cells, and to define surface areas, called faces, between the cells and
on the boundaries of the mesh.

In a three-dimensional mesh, nodes are zero-dimensional, faces are two-dimensionall, and cells are three-
dimensional.

In a two-dimensional mesh, nodes are zero-dimensional, faces are one-dimensional (with a suppressed second
dimension), and cells are two-dimensional (with a suppressed third dimension).

In a one-dimensional mesh, nodes are zero-dimensional, faces are zero-dimensional (with two suppressed
dimensions), and cells are one-dimensional (with two additional suppressed dimensions).

The connectivity of a mesh refers to the way that nodes are connected to form cells, and the way that cells
are connected to each other. The connectivity of a mesh may be specified in several ways, but a common
form gives the node numbers surrounding each cell in an array.

The cell-shape of a mesh is determined by the maximum allowed number of faces for a cell in the mesh. In
some meshes, degenerate cells are allowed which have fewer than the maximum number of faces. For one-
dimensional meshes, the only possible cell-shape is segmented, which refers to a line segment or bar as the
representation of a cell. For two-dimensional meshes, the possible cell-shapes are triangular, quadrilateral, or
polygonal. For three-dimensional meshes, the possible cell-shapes are tetrahedral, hexahedral, or polyhedral.

The geometry of a mesh refers to both the coordinate system used by the mesh and the common names
for the coordinate axes that are not suppressed. With a Cartesian coordinate system, using the common
names of z, y, and z for the axes, the possible geometries are z-Cartesian, zy-Cartesian, and zyz-Cartesian.
With a cylindrical coordinate system, using the common names of r, §, and z for the axes, the possible
unique geometries are r-Cylindrical, §-Cylindrical, r6-Cylindrical, rz-Cylindrical, and rf2-Cylindrical. With
a spherical coordinate system, using the common names of r, 8 (azimuth, range of 0-27), and ¢ (zenith, range
of 0-7) for the axes, the possible unique geometries are r-Spherical, 8-Spherical, ¢-Spherical, r6-Spherical,
r¢-Spherical, ¢-Spherical, and rf¢-Spherical. In CESAR only the major geometries are included, namely
z-Cartesian, r-Cylindrical, r-Spherical, zy-Cartesian, rz-Cylindrical, and zyz-Cartesian.

IEven though faces are two-dimensional surfaces, they may be warped in such a way that they are not flat, in the same way
that the surface of a sphere is not flat even though it is two-dimensional

14.1. MULTI_MESH CLASS 169

Mesh Type Descriptions:

In the mesh descriptions that follow, distinctions are made for the connectivity of the mesh

Unstructured Polyhedral or Polygonal Mesh

A mesh is said to be structured, or logically rectangular, if its nodes and cells can be numbered with
an index for each dimension. For example, in three dimensions every cell in a structured mesh can be re-
ferred to by an (7, 7, k) triplet. In a structured mesh the connectivity is known a priori — mesh cell (3, 7, k)
shares a face with cells (Z + lvj’k) ’ (’L - l’j’ k) ’ (27.7 + 17 k) ’ (’L’] - 1’ k) ’ (ivj’k + 1) ’ and (iaj’ k — 1)
and is defined by nodes (i, 5, k) , (i + 1, j,k) , (i,5 + 1,k), (i + 1,j + LK), (i, 5,k + 1), (5, k + 1), (6 + L,j, k+ 1), (i, +
and (1 + 1,7 + 1,k + 1). Structured meshes must be formed from quadrilateral meshes in 2-D and hex-
ahedral meshes in 3-D.

A mesh is said to be orthogonal if all of the mesh faces are aligned with the coordinate axes. Thus, one
can speak of a minus z-face or a plus y-face of a cell with no ambiguity. All angles between faces are
either zero or 90°. Orthogonal meshes are composed of rectangles in 2-D and right rectangular prisms
(also known as rectangular parallelepipeds) in 3-D. In addition, each face is planar in 3-D.

A uniform mesh has cells that all have the same shape and size. All cells have the same volume and face
areas. Stating a cell-width and the number of cells in each direction completely specifies a uniform
mesh. Uniform meshes are composed of rectangles in 2-D and right rectangular prisms (also known as
rectangular parallelepipeds) in 3-D.

AMR (Adaptive Mesh Refinement) meshes can be thought of as a halfway point between quadrilat-
eral /hexahedral cell-shapes and polygonal/polyhedral cell-shapes.

Initialize (Mesh, ”Uniform”, Geometry, NDimensions, dx, dy, dz

Multi_Mesh public procedures:

Fundamental procedures

Initialize Initializes a Multi_Mesh object.

Finalize Finalizes a Multi_Mesh object.

Valid_State Returns false iff a Multi Mesh object is in an invalid state.
Initialized Returns true iff a Multi_Mesh object has been initialized.

Operations

Name Returns the name of the Multi_Mesh object.

Output Writes out the Multi_Mesh object.

Set_Version Sets the version number of the Multi_Mesh object (also has an assignment interface).
Version Returns the version number of the Multi_Mesh object.

Multi Mesh public defined type:

Multi_Mesh type

Initialized Initialization status.
Name The name for this mesh.
Version Version number which is incremented every time the array is modified, or is synced

with the version number of a data structure that it depends on when it is updated.

The Multi_ Mesh Class code listing in § 1.1 on page 683 contains additional documentation. The Multi_Mesh
Class also contains a Unit Test Program which is listed in § 1.1.24 on page 748.

170

CHAPTER 14. MESH MODULE

14.1.1 Initialize_Base_Multi_Mesh Procedure

The Initialize_ Base_Multi_Mesh procedure allocates and initializes the fundamental parts of a Multi_Mesh
object that are common to all mesh types. It sets the following mesh data:

mesh type information (NDimensions, Geometry, Uniformity, Orthogonality, Structure, AMR, Shape),

e mesh scalar information (NCells_total, NCells_PE, Last_Cell_ PE, First_Cell_ PE, Range_Cells_PE, NN-
odes_total, NNodes_PE, Last_Node PE, First Node PE, Range Nodes PE, NFaces_total, NFaces_PE,
Last_Face_PE, First_Face_ PE, Range Faces_PE, Nodes_per_Cell, Nodes_per_Face, Faces_per_Cell),

e mesh base structures (Node_Structure, Cell_Structure, Face_Structure),

e mesh coordinates (Coordinates_Nodes), and

¢ mesh node-cell connectivity (Nodes_of_Cells Index).

The Initialize_ Base_Multi_Mesh procedure is most often used in specific mesh initialization procedures.

Calling syntax:

call Initialize (Mesh, NDimensions, Geometry, Uniformity, Orthogonality, Structure, AMR, Shape, NNo

Input variables:

Mesh
NDimensions
Geometry
Uniformity
Orthogonality
Structure

AMR

Shape

NNodes_Vector

NCells_Vector

NFaces_Vector
Coordinates_Nodes_PE(NDimensions,Nodes_PE)
Nodes_of_Cells_PE(Cells_PE,Nodes_per_Cell)
dim{n}

Mesh_Name

Output variables:

The Multi_Mesh object to be initialized.

The number of spatial dimensions. [1,2,3]

The geometry type. [Cartesian, Cylindrical, or Spherical]

The uniformity of the mesh. [Uniform, Nonuniform]

The orthogonality of the mesh. [Orthogonal, Nonorthogonal]

The mesh structure. [Structured, Unstructured]

Logical which is true for Adaptive Mesh Refinement (AMR, H-type
The shape of cells in the mesh. [Segmented, Triangular, Quadrilate
Tetrahedral, Hexahedral, Polyhedral]

A vector containing the number of mesh nodes on each PE.

A vector containing the number of mesh cells on each PE.

A vector containing the number of mesh faces on each PE.

The coordinates of the nodes on this PE.

The node numbers for each cell on this PE.

The dimensions for this “array”. There must be dimensions specified
one less than the Dimensionality. These are only needed in the secc
call. [Optional]

The name for this mesh. [Optional]

Mesh The Multi_Mesh object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.
consolidated_status Consolidated Status.

14.1. MULTI_MESH CLASS 171

The Initialize Base_Multi_Mesh code listing in § I.1.1 on page 690 contains additional documentation.

14.1.2 Initialize_Uniform_Multi_Mesh Procedure

The Initialize_Uniform Multi_ Mesh procedure allocates and initializes a uniform Multi_Mesh object. A uni-
form mesh is a structured, orthogonal, cartesian? mesh where every cell is exactly the same size and shape.
There is a single Az, Ay and Az for the entire mesh, which has a block-shaped domain (i.e. a right rect-
angular prism in 3D). In parallel, each PE also contains a block-shaped domain, but each PE may have
a different-sized block. An optimum partitioning of the mesh, given these constraints, is generated by the
Gen_StructureMesh_Connectivity procedure.

In addition to the mesh data set by the Initialize_Base_Multi_Mesh procedure, this procedure also sets the
following uniform-specific mesh data:

e mesh cell-cell connectivity (Cells_of_Cells_Index),

e mesh face flags to indicate left (-x), right (+x), front (-y), back (+y), bottom (-z), top (+z) and interior
faces (Flag_Faces_of_Cells),

e physical dimensions of the entire domain (Lengths),
e the volume of every cell (Volume_All_Cells), and

e the area for all faces (Area_All Faces).

Calling syntax:
call Initialize (Mesh, NDimensions, Lengths, NCells_X_total, NCells_Y_total, NCells_Z_total, Mesh_N

Input variables:

Mesh The Multi_Mesh object to be initialized.
NDimensions The number of dimensions for the mesh.
Lengths A vector of the physical lengths for the mesh.

NCells_X_total Total number of cells in the X-direction, defined on every PE.
NCells_Y_total Total number of cells in the Y-direction, defined on every PE. [Optional]
NCells_Z_total Total number of cells in the Z-direction, defined on every PE. [Optional]
Mesh_Name The name for this mesh. [Optional]

Output variables:

Mesh The Multi_Mesh object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:
allocate_status Allocation Status.

consolidated_status Consolidated Status.

The Initialize Uniform Multi_Mesh code listing in § 1.1.2 on page 694 contains additional documentation.

2capability for non-cartesian uniform meshes could be added, but each cell would no longer have the same volume and face
areas, so those procedures would need to be modified also

172 CHAPTER 14. MESH MODULE

14.1.3 Initialize_Orthogonal Multi_Mesh Procedure

The Initialize_Orthogonal Multi_Mesh procedure allocates and initializes an orthogonal Multi_Mesh object.
An orthogonal mesh is a structured, cartesian® mesh with block-shaped cells. Each cell may have a different
Az, Ay and Az, but the entire mesh can be described by vectors of coordinates along the three axes. The
mesh has a block-shaped domain (i.e. a right rectangular prism in 3D). In parallel, each PE also contains a
block-shaped domain, but each PE may have a different-sized block. An optimum partitioning of the mesh,
given these constraints, is generated by the Gen_StructureMesh_Connectivity procedure.

In addition to the mesh data set by the Initialize_Base_Multi_Mesh procedure, this procedure also sets the
following orthogonal-specific mesh data:
e mesh cell-cell connectivity (Cells_of_Cells_Index),

o mesh face flags to indicate left (-x), right (+x), front (-y), back (+y), bottom (-z), top (+z) and interior
faces (Flag_Faces_of_Cells), and

e physical dimensions of the entire domain (Lengths).

Calling syntax:
call Initialize (Mesh, NDimensions, Coordinates_Nodes_X, Coordinates_Nodes_Y, Coordinates_Nodes_Z,

Input variables:

Mesh The Multi_Mesh object to be initialized.

NDimensions The number of dimensions for the mesh.

Coordinates_Nodes_X The X-coordinates for all of the nodes, defined on every PE.
Coordinates_Nodes_Y The Y-coordinates for all of the nodes, defined on every PE. [Optional]
Coordinates_Nodes_Z The Z-coordinates for all of the nodes, defined on every PE. [Optional]
Mesh_Name The name for this mesh. [Optional]

Output variables:

Mesh The Multi_Mesh object has been allocated and initialized.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

allocate_status Allocation Status.
consolidated_status Consolidated Status.

The Initialize_Orthogonal Multi_Mesh code listing in § I1.1.3 on page 698 contains additional documentation.

14.1.4 Finalize Multi_Mesh Procedure

The Finalize Multi_ Mesh procedure deallocates and finalizes a Multi_Mesh object.

Calling syntax:

3capability for non-cartesian orthogonal meshes could be added, if the volume and face area procedures were modified
accordingly

14.1. MULTI_MESH CLASS 173

call Finalize (Mesh, status)

Input variables:

Mesh The Multi_Mesh object to be finalized.

Output variables:

Mesh The Multi_Mesh object has been finalized and is no longer valid.

status If present, the status variable is set to either ’Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

Internal variables:

consolidated_status Consolidated Status.
deallocate_status Deallocation Status vector.

The Finalize Multi Mesh code listing in § 1.1.4 on page 714 contains additional documentation.

14.1.5 Valid_State_Multi_Mesh Procedure

The Valid_State_Multi_Mesh procedure returns true iff the Multi_Mesh is in a valid state — that is, iff the
Multi_Mesh passes all of the valid state tests.

Calling syntax:
Logical = Valid_State(Mesh)

Input variables:

Mesh The Multi_Mesh to be checked.

Output variable:

Valid_State True iff the Multi_Mesh is in a valid state.

The Valid_State_Multi_Mesh code listing in § 1.1.5 on page 716 contains additional documentation.

14.1.6 Initialized_Multi_Mesh Procedure

The Initialized Multi_Mesh procedure returns true iff the Multi_Mesh object has been initialized.
Calling syntax:
Logical = Initialized(Mesh)

Input variable:

Mesh The Multi_Mesh object to be examined.

Output variable:

174 CHAPTER 14. MESH MODULE

Initialized True iff the Multi_Mesh object has been initialized.

The Initialized Multi_Mesh code listing in § 1.1.6 on page 717 contains additional documentation.

14.1.7 Dump CGNS_Multi Mesh Procedure

NOTE: This procedure has not been fully implemented and tested.
The Dump_CGNS_Multi Mesh procedure writes a CGNS output file for a mesh to the specified filename.
Calling syntax:

call Dump_CGNS (Mesh, Filename, status)

Input variables:

Filename The filename for CGNS dump output.
Mesh The Multi_Mesh object to be queried.

The Dump_CGNS_Multi_Mesh code listing in § 1.1.7 on page 718 contains additional documentation.

14.1.8 Dump_GMV _Multi_Mesh Procedure
The Dump_GMV _Multi_ Mesh procedure writes a GMV plotting file for a mesh and any listed variables to
the specified filename.
Calling syntax:
call Dump_GMV (Filename, Mesh, Variablel MV, ..., VariableN_MV, Variablel_DV, ..., VariableN_DV, st

Input variables:

Filename The filename for GMV dump output.

Mesh The Multi_Mesh object to be output to the GMV dump file.

Variable# MV Mathematical vectors to be output along with the mesh. The pound sign may be
replaced with a number from 1 to REP_NUMBER. [Optional]

Variable# DV Distributed vectors to be output along with the mesh. The pound sign may be
replaced with a number from 1 to REP_NUMBER. [Optional]

Output variable:

status If present, the status variable is set to either ’File Error’, ‘Memory Error’,
‘Multiple Error’ or ’Success’ depending on program execution. If not present,
the procedure aborts if unsuccessful when the DEBUG_LEVEL is set high enough.

The Dump_GMV _Multi_Mesh code listing in § 1.1.8 on page 722 contains additional documentation.

14.1.9 Dump_GMYV DV and MV Vector Procedures

The Dump_GMV _Distributed_Vector and Dump_GMV _Mathematic_Vector procedures are used internally to
output a variable to the middle of a GMV plotting file.

Calling syntax:

14.1. MULTI_MESH CLASS 175

call Dump_GMV_Distributed_Vector (Variable, Mesh, unit, status) or
call Dump_GMV_Mathematic_Vector (Variable, Mesh, unit, status)

Input variables:

Variable Mathematical or Distributed Vector to be output.
Mesh The Multi_Mesh object for this GMV dump.
unit The unit for GMV dump output.

Output variable:

status If present, the status variable is set to either ‘Memory Error’ or ’Success’ de-
pending on program execution. If not present, the procedure aborts if unsuccessful
when the DEBUG_LEVEL is set high enough.

The Dump_GMYV DV and MV Vector code listing in § 1.1.9 on page 726 contains additional documentation.

14.1.10 Get_Area_Faces_of_Cells_Multi_Mesh Procedure

The Get_Area_Faces_of_Cells_Multi_Mesh procedure returns the vector areas for each face of each cell of a
Multi_Mesh object.

Calling syntax:
call Get_Area_Faces_of_Cells (Area_Faces_of_Cells, Mesh)

Input variable:

Mesh The Multi_Mesh object.

Output variable:
Area_Faces_of_Cells An array of the vector areas for each face of the cells on this PE.

The Get_Area_Faces_of_Cells_ Multi_ Mesh code listing in § 1.1.10 on page 729 contains additional documen-
tation.

14.1.11 Get_Coordinates_Cells_Multi_Mesh Procedure

The Get_Coordinates_Cells_Multi_Mesh procedure returns the cell center coordinates for each cell of a Multi_-
Mesh object.

Calling syntax:
call Get_Coordinates_Cells (Coordinates_Cells, Mesh)

Input variable:

Mesh The Multi_Mesh object.

Output variable:

Coordinates_Cells The cell-center coordinates for each cell on this PE.

176 CHAPTER 14. MESH MODULE

The Get_Coordinates_Cells_Multi_Mesh code listing in § 1.1.11 on page 731 contains additional documenta-
tion.

14.1.12 Get_Coordinates_Cells_of _Cells_Multi_Mesh Procedure

The Get_Coordinates_Cells_of_Cells_Multi_Mesh procedure returns the coordinates for the cell on the other
side of each face of each cell of a Multi_Mesh object.

Calling syntax:
call Get_Coordinates_Cells_of_Cells (Coordinates_Cells_of_Cells, Mesh)

Input variable:

Mesh The Multi_Mesh object.

Output variable:

Coordinates_Cells_of_Cells An array of the coordinates for the cells on the other side of each face of the cells
on this PE.

The Get_Coordinates_Cells_of_Cells Multi_Mesh code listing in § 1.1.12 on page 732 contains additional
documentation.

14.1.13 Get_Coordinates_Faces_of_Cells_Multi_Mesh Procedure

The Get_Coordinates_Faces_of_Cells_Multi_Mesh procedure returns the coordinates for each face of each cell
of a Multi_Mesh object.

Calling syntax:
call Get_Coordinates_Faces_of_Cells (Coordinates_Faces_of_Cells, Mesh)

Input variable:

Mesh The Multi_Mesh object.

Output variable:
Coordinates_Faces_of_Cells An array of the coordinates for each face of the cells on this PE.

The Get_Coordinates Faces_of_Cells_Multi_Mesh code listing in § 1.1.13 on page 734 contains additional
documentation.

14.1.14 Get_Coordinates_Nodes_of_Cells_Multi_Mesh Procedure
The Get_Coordinates Nodes_of_Cells_Multi_Mesh procedure returns the node coordinates for each node of
each cell of a Multi_Mesh object.
Calling syntax:
call Get_Coordinates_Nodes_of_Cells (Coordinates_Nodes_of_Cells, Mesh)

Input variable:

14.1. MULTI_MESH CLASS 177

Mesh The Multi_Mesh object.

Output variable:

Coordinates_Nodes_of_Cells The coordinates of the nodes for each cell on this PE.

The Get_Coordinates Nodes_of Cells_ Multi Mesh code listing in § 1.1.14 on page 736 contains additional
documentation.

14.1.15 Get_DeltaR21_Cells_of Cells_Multi_Mesh Procedure

The Get_DeltaR21_Cells_of_Cells_Multi_Mesh procedure returns the absolute distance between the cell center
and the cell center across each face (the “other” cell) for each face of each cell of a Multi_Mesh object.

Calling syntax:
call Get_DeltaR21_Cells_of_Cells (DeltaR21_Cells_of_Cells, Mesh)

Input variable:

Mesh The Multi_Mesh object.

Output variable:

DeltaR21_Cells_of_Cells The absolute distance between the cell center and the other_cell center (across the
face) for each cell on this PE.

The Get_DeltaR21_Cells_of_Cells_ Multi Mesh code listing in § 1.1.15 on page 737 contains additional docu-
mentation.

14.1.16 Get_DeltaR1f Cells_of_Cells_Multi_Mesh Procedure

The Get_DeltaR1f_Cells_of_Cells_Multi_Mesh procedure returns the absolute distance between the cell center
and each face center for each cell of a Multi_ Mesh object. Although the locus could be thought of as
Faces_of_Cells, it is called Cells_of_Cells to correspond with other variables across the face (e.g. DeltaR2f -
Cells_of_Cells).

Calling syntax:
call Get_DeltaR1f_Cells_of_Cells (DeltaR1f_Cells_of_Cells, Mesh)

Input variable:

Mesh The Multi_Mesh object.

Output variable:

DeltaR1f_Cells_of_Cells The absolute distance between the cell center and each face center for each cell on
this PE.

The Get_DeltaR1f_Cells_of_Cells_Multi_Mesh code listing in § 1.1.16 on page 739 contains additional docu-
mentation.

178 CHAPTER 14. MESH MODULE

14.1.17 Get_DeltaR2f Cells_of_Cells_Multi_Mesh Procedure

The Get_DeltaR2f_Cells_of_Cells_Multi_Mesh procedure returns the absolute distance between the cell center
across the face (the “other” cell) and the face itself for each face of each cell of a Multi_Mesh object.

Calling syntax:
call Get_DeltaR2f_Cells_of_Cells (DeltaR2f_Cells_of_Cells, Mesh)

Input variable:

Mesh The Multi_Mesh object.

Output variable:

DeltaR2f_Cells_of_Cells The absolute distance between the other cell center and each face center for each
cell on this PE.

The Get_DeltaR2f _Cells_of_Cells_Multi_Mesh code listing in § 1.1.17 on page 740 contains additional docu-
mentation.

14.1.18 Get_Flag Faces_of Cells_Multi_Mesh Procedure

The Get_Flag Faces_of _Cells Multi_Mesh procedure returns the Flag for each face of each cell of a Multi_Mesh
object. These flags are set to:

internal faces
left faces (-x)
right faces (+x)
front faces (-y)
back faces (+y)
bottom faces (-z)
top faces (+z)

UL LW N~ O

Calling syntax:
call Get_Flag_Faces_of_Cells (Flag_Faces_of_Cells, Mesh)

Input variable:

Mesh The Multi_Mesh object.

Output variable:

Flag_Faces_of_Cells The flags for each face of the cells on this PE.

The Get_Flag Faces_of_Cells_ Multi_Mesh code listing in § 1.1.18 on page 741 contains additional documen-
tation.

14.1.19 Get Value Multi_Mesh Functions

The Get_Value_Multi_Mesh functions return values from a Multi_Mesh object.

Calling syntax:

14.1. MULTI_MESH CLASS

Pointer = Cell_Structure(Mesh) ,
Pointer = Face_Structure(Mesh) ,
Output = First_Cell_PE(Mesh) ,
Output = First_Face_PE(Mesh) ,
Output = First_Node_PE(Mesh) ,
Output = Get_Faces_per_Cell(Mesh) ,
Output = Get_NDimensions(Mesh) ,
Output = Last_Cell_PE(Mesh) ,
Output = Last_Face_PE(Mesh) ,
Output = Last_Node_PE(Mesh) ,
Output = Name(Mesh) ,
Output = NCells_PE(Mesh) ,
Output = NCells_Total(Mesh) ,
Output = NFaces_PE(Mesh) ,
Output = NFaces_Total(Mesh) ,
Output = NNodes_PE(Mesh) ,
Output = NNodes_Total(Mesh) ,
Pointer = Node_Structure(Mesh) ,
Range = Range_Cells_PE(Mesh) ,
Range = Range_Faces_PE(Mesh) or
Range = Range_Nodes_PE(Mesh)

Input variable:

Mesh The Multi_Mesh object to be queried.

Output variables:

Pointer A pointer to a Base Structure within the Mesh object.

Output For Name, returns a character variable containing the name assigned to the Mesh
upon initialization. Otherwise, an integer with the named value from the Mesh
object is returned.

Range A dimension(2) integer with the specified range from the Mesh object.

The Get Value Multi_Mesh code listing in § 1.1.19 on page 742 contains additional documentation.

14.1.20 Get_Version_Multi_Mesh Procedure

The Get_Version_Multi_Mesh procedure returns the version number for a Multi_ Mesh Object.
Calling syntax:
Integer = Version(Mesh)

Input variables:

Mesh The Multi_Mesh object to be queried.

Output variable:

Version The version number of the Multi_Mesh object.

The Get_Version_-Multi_Mesh code listing in § 1.1.20 on page 744 contains additional documentation.

179

180 CHAPTER 14. MESH MODULE

14.1.21 Get_Volume_Cells_Multi_Mesh Procedure

The Get_Volume _Cells_ Multi_Mesh procedure returns the cell volumes from a Multi_ Mesh object.
Calling syntax:
call Get_Volume_Cells (Volume_Cells, Mesh)

Input variable:

Mesh The Multi_Mesh object.

Output variable:

Volume_Cells An array of the cell volumes on this PE.

The Get_Volume _Cells_ Multi_Mesh code listing in § 1.1.21 on page 745 contains additional documentation.

14.1.22 Set_Coordinates_Multi_Mesh Procedure

Note: This procedure is not finished and does not currently work.
The Set_Coordinates Multi_Mesh procedure sets the coordinates for the Multi_Mesh object.
Calling syntax:

Mesh = Coordinates or
call Set_Coordinates (Mesh, Coordinates)

Input variable:
Coordinates The Bare Naked Array of coordinates for the Multi_Mesh object, defined differently
on each PE.
Input/Output variable:

Mesh The Multi_Mesh object to be set.

Internal variable:

Version_Increment The amount that the version number is incremented, which is a global class variable.

The Set_Coordinates_ Multi_Mesh code listing in § 1.1.22 on page 747 contains additional documentation.

14.1.23 Set_Version_Multi_Mesh Procedure

The Set_Version_Multi_Mesh procedure sets the version number for the Multi_Mesh object.
Calling syntax:

Mesh = Version or
call Set_Version (Mesh, Version)

Input variable:

14.1. MULTI_MESH CLASS 181

Version The version number for the Multi_Mesh object.

Input/Output variable:

Mesh The Multi_Mesh object to be set.

The Set_Version Multi Mesh code listing in § 1.1.23 on page 748 contains additional documentation.

182 CHAPTER 14. MESH MODULE

Part 111

Caesar Package Methods Discussion

183

Chapter 15

Mathematics Methods

This chapter describes the general mathematical methods used in C&SAR. Each section uses its own unique
nomenclature.

15.1 Math_Utils Methods

The C&SAR Math_Utils Module contains the following procedures:

Math _Utils public procedures:

Prime_Factors Returns a vector containing the prime factorization of a number.

15.1.1 Prime_Factors Procedure

The Prime_Factors procedure uses an optimized direct search procedure to calculate the prime factorization
of a number N:

e Factors of N are found by systematically performing trial divisions using a sequence of increasing
numbers.

o Note that a direct search to discover the prime factors does not need to go further than /N, since all
integers greater than v/ N have already had their cofactors tested.

e Recognize that if, for example, all factors of 2 are factored out of a number (to yield N' = N/2?),
then the problem has been reduced to finding the prime factorization of the smaller number N, using
integers between 3 and vV N'.

e Also, a procedure is used to eliminate multiples of small primes from the testing procedure. Once the
first two primes have been factored out of the number (to yield N = N/ (2737)), then the remaining
primes are included within the set {6 — 1,6¢ + 1}. This is true because the entire set of integers can be
represented as {6¢,6i + 1,6i + 2,6i + 3,6i + 4,6i + 5}; all but {6¢ + 1,6: + 5} are divisible by 2 and/or
3; and {6¢ + 1,6i + 5} is equivalent to {6i — 1,6 + 1}. Therefore, only integers of the forms 6; —1 and
67 + 1 need be checked.

185

186 CHAPTER 15. MATHEMATICS METHODS

15.2 Statistics Methods

The CESAR Statistics Class is used to keep track of the statistics associated with a sample population or
distribution. Currently, the class stores only conglomerate information about the population and does not
store the entire distribution. Therefore, certain types of statistical information, such as the median and the
mode, are not available. The following values are calculated by the class.

Given a set of N variables denoted by {z;}, the arithmetic mean, or average, of the distribution is given by
() = & > i (15.1)

The geometric mean of the distribution (calculated only if all z; are positive) is given by

(@) =1/ Hil zi (15.2)

| X
() = exp (N Zln x,) . (15.3)

or equivalently by

(@)y = [% > H : (15.4)

;X
s=A\v_1 E (z; — (z))?, (15.5)
or equivalently by
1 [&)
s=A\wv—1 LEZI (2) — N (z)] . (15.6)

Note that the factor N — 1, rather than N, is required in the denominator to account for the fact that
the parameter (z) has been determined from the distribution and not independently. This formula for the
standard deviation is sometimes called the sample standard deviation. The limits of the sample mean and
the sample standard deviation give the true values:

p = lim (z), (15.7)
N—o0

= lim s. (15.8)
N—o0

(15.9)

The Statistics Class also calculates minimum and maximum values for the distribution. The Valid_State
procedure verifies that all of the means lie within the extremum bounds, and that the following mathematical
relationship holds:

(@) < (2)g < (2 - (15.10)

Chapter 16

Linear Algebra Methods

This chapter describes the general linear algebra methods used in C&£SAR. Each section uses its own unique
nomenclature.

16.1 Mathematic_Vector Methods

The C&ESAR Code Package uses the Mathematic_Vector class to contain and manipulate algebraic vectors.
The following discussion assumes that z and y are vectors of length N.

The C&SAR Code Package contains procedures to calculate norms and dot products of vectors. In parallel,
these operations require global communication. Dot products are defined by

tTy=z-y=(z,y) = Z ;i Yi - (16.1)
i=1,N

A vector norm is any scalar-valued function on a vector, denoted by the double bar notation ||z||, that
satisfies these properties:

ll=ll = 0 (llzll = 0 iff 2 = 0) ,
= +yll <l + [yl (16.2)
|sz|| = |s] ||z , where s is a scalar .

The general class of vector norms known as the p-norms are defined by

loll, = 2[3 Jal? L p>1. (16.3)
i=1,N

In particular, the 1, 2, and oo norms are the most important:

lell, = Y lal, (16.4)
i=1,N
lell, = [|zif®=2"2, and (16.5)
i=1,N
lzlloe = max |z - (16.6)

The following vector norm relationships are verified by the Mathematic_Vector Valid_State procedure:

lell, < llzll, < VNl ,
Ilzlle < llzll, < VN2l (16.7)
lelle < llzll, < Nzl -

187

188 CHAPTER 16. LINEAR ALGEBRA METHODS

The Cauchy-Schwartz inequality is verified by the Mathematic_Vector DotProduct procedure:
|zTy| < llzll, llyll; - (16.8)

For a similar but more complete discussion of vector operations see Golub and Van Loan (1989).

16.2 ELL Matrix Methods

The C&EsAR Code Package uses the ELL_Matrix class to contain and manipulate algebraic matrices. The
following discussion assumes that A and B are matrices of dimension M x N, a;; is an element of 4, z is a
vector of length N, and y is a vector of length M.

The CEsSAR Code Package contains procedures to calculate matrix norms and matrix-vector products. In
parallel, these operations require global communication. Matrix-vector products (MatVecs) are defined by

Al‘ =y = Z ai,j mj . (169)
j=1,N

A matrix norm is any scalar-valued function on a matrix, denoted by the double bar notation ||A||, that
satisfies these properties:

lA]l >0 (Al =0iff A=0),
A+ Bl <Al + 1Bl , (16.10)
[|sAll = |s||4]l , where s is a scalar .

A frequently used matrix norm is the Frobenius norm:

1Al = [>0 D lais- (16.11)

i=1,M j=1,N

The general class of matrix norms known as the p-norms are defined in terms of vector norms by:

Az
||A||p = sup I “p = ax
a0 |lzll, el =1

A=, ,p>1. (16.12)

In particular, the 1 and oo norms are the most easily calculated:

4], = 12%)5\] ._IZM |ai, 5 (maximum absolute column sum), (16.13)
4], = 12?{M .;N s, (maximum absolute row sum). (16.14)
i=1,

In general, p-norms are difficult to calculate. The 2-norm can be shown to be:

|4ll, = v/maximum eigenvalue of AHA (16.15)
= /maximum eigenvalue of ATA if A is real (16.16)

where A is the Hermitian (or complex conjugate transpose, or adjoint) of A. Calculating the 2-norm of
a matrix requires an iterative procedure, and is not currently done in C&SAR (only Frobenius, p = 1 and
p = oo norms are calculated). However, CESAR calculates an estimate of the 2-norm as a range (or the
middle of the range) using the following relationships:

Al < 114l < lAllg
max|a; ;| < [|All, < VMNmax|a |,
1,] %,
Al < 114, < VM4, , (16.17)
2 4l < 4l < VN|AlL
1All, < 1Al 4]l -

For a similar but more complete discussion of matrix operations see Golub and Van Loan (1989).

16.3. SOLVER METHODS 189

16.3 Solver Methods

The C&SAR Code Package uses the blorp method to calculate Solvers.

190 CHAPTER 16. LINEAR ALGEBRA METHODS

Part IV

Casar Package Code Listings

191

Appendix A

m4 Preprocessing Code Listings

A.1 Settings m4 Macros

The main documentation of the Settings m4 Macros in section 6.1 contains additional explanation of this
code listing.

dnl

dnl Author: Michael L. Hall

dnl P.0. Box 1663, MS-D409, LANL
dnl Los Alamos, NM 87545

dnl ph: 505-665-4312

dnl email: hall@lanl.gov

dnl

dnl Created on: 02/26/98

dnl Date: 03/21/00, 17:15:20

dnl Version: 6.8

dnl Change the quotation characters to avoid F90 conflicts.
m4_changequote([,])

dnl Change the comment characters to eliminate m4 macro

dnl expansion in F90 comments.

m4_changecom([!])

dnl Redefine the "dnl" command to be unprefixed. Note that the "dnl"
dnl command is nonfunctional before this definition is made, but that
dn]l unwanted output from the processing of this file is avoided by
dnl diverting the entire output (up until now) to nowhere. (Notice the

dnl m4_divert(-1) command in the initialization.)

m4_define([dnl] ,m4_defn([m4_dnl]))
m4_divert

193

194 APPENDIX A. M4 PREPROCESSING CODE LISTINGS

dnl Define unprefixed versions of m4 builtin macros that are
dnl commonly used. All other m4 builtin macros must be prefixed
dnl by "m4_".

m4_define([define] ,m4_defn([m4_define]))
m4_define([ifdef] ,m4_defn([m4_ifdef]))
m4_define([ifelse] ,m4_defn([m4_ifelse]))
m4_define([include] ,m4_defn([m4_include]))
m4_define([popdef] ,m4_defn([m4_popdef]))
m4_define ([pushdef] ,m4_defn([m4_pushdef]))
mé4_define ([undefine] ,m4_defn([m4_undefine]))

dnl The m4_chop macro (based on perl’s chop command) returns the
dnl input string minus its final character. m4_chop is useful for
dnl removing "\n" from m4_esyscmd strings.

define([m4_chop]l, [m4_substr($1l, 0, m4_decr(mé4_len($1)))]1)

dnl Define cpp-style predefined macros for date and time information.
dnl These names correspond to those described in "The C Programming
dnl Language", B. W. Kernighan and D. M. Ritchie (1988), page 233.
dnl The __file__ and __line__ predefined macros are already defined

dnl in Gnu m4, but are redefined here to remove the "m4_" prefix.

define([__date__], [m4_chop(m4_esyscmd(date +%D))])
define([__time__], [m4_chop(m4_esyscmd(date +%T))])
define([__file__], m4_defn([m4___file__]))
define([__line__], m4_defn([m4___line__]))

dnl The m4_die macro (based on perl’s die command) prints an error
dnl message and then terminates.

define([m4_die], [m4_errprint([m4:]__FILE LINE__: [$1]) m4_mdexit(1)])

dnl The expand macro is used to force macro expansion in a word
dnl containing underscores, since underscores are not a word-delimiter
dnl in standard m4.

define([expand], [m4_translit(m4_translit([$1], [_1, [*1), [*]1, [_1D1)

dnl The forloop macro, which iterates a section of text numerically,
dnl letting the loop variable take on successive numerical values when
dnl expressing the section of text. This version is better than the
dnl version in the Gnu m4 manual because it checks for the case of

dnl starting loop value greater than final loop value, and produces
dnl no output when this occurs.

dnl The arguments for the forloop macro are:

A.1. SETTINGS M4 MACROS

dnl $1 - The name of the iteration variable.

dnl $2 - The starting value.

dnl $3 - The final value.

dnl $4 - The text to be expanded for each iteration.

define([forloop],
[ifelse(
m4_eval($2 > $3), 1,
1,
m4_eval ($2 <= $3), 1,
[pushdef ([$1], [$2])$4[Ipopdef ([$1]1)]1)[1dnl
ifelse(
mé_eval($2 < $3), 1,
[forloop([$1], m4_incr($2), [$31, [$41)1DD)

dnl The firstword and tailwords macros operate on a space-delimited list
dnl of words. The firstword macro returns the first word in the list, and
dnl the tailwords macro returns a space-delimited list of words derived
dnl by eliminating the first word.

define([firstword],

[ifelse(
m4_index([$1], [1), [-1],
[$1],
[m4_substr ([$1],0,m4_index([$11, [1))1)[1dnl
1
define([tailwords],
[ifelse(
m4_index([$11, [1), [-1],
0,

[m4_substr([$1] ,m4_incr (m4_index([$1], [1)))]1) [1dnl
n

dnl The fortext macro is similar to the forloop macro, except that the
dnl loop variable takes on successive textual values instead of numerical
dnl values. The arguments for the fortext macro are:

dnl $1 - The name of the iteration variable.

dnl $2 - A string of values for the iteration variable, separated by
dnl spaces.

dnl $3 - The text to be expanded for each iteration.

define([fortext],
[ifelse(
firstword($2), [1,
0,
[pushdef ([$1], [firstword($2)])$3[Ifortext(
[$1], tailwords($2), [$3]1)])popdef ([$1]) [Idnl
D

195

196 APPENDIX A. M4 PREPROCESSING CODE LISTINGS

A.2 Type m4 Macros

The main documentation of the Type m4 Macros in section 6.2 contains additional explanation of this code
listing.

dnl

dnl Author: Michael L. Hall

dnl P.0. Box 1663, MS-D409, LANL
dnl Los Alamos, NM 87545

dnl ph: 505-665-4312

dnl email: hall@lanl.gov

dnl

dnl Created on: 11/12/98

dnl Date: 03/21/00, 17:16:07

dnl Version: 4.0

dnl Define a real$kind private macro based on the desired precision.

ifdef ([SINGLE], [
define([real$kind], [1.0e0])
1,[
ifdef ([UNICOS], [
define([real$kind],[1.0e0])
1,[
define([real$kind]l,[1.0d40])
D
iD

dnl Define a private macro to expand to the pointer and dimensioning
dnl info.

define([pnt$dim],
[ifelse(
[$11, 0O,
a,
[$11, [o],
1,
[ifelse([$2], [1, [, pointer]), dimension(:forloop([i],2,$1,[,:1))1)]1)

dnl Define a type macro which interprets real, integer, logical
dnl and character types correctly and leaves other types unchanged.

dnl Arguments to the type macro:
dnl $1 - The main type: real, integer, logical or character. If the

dnl type is character, the next argument is the character
dnl length (and all the remaining argument numbers are
dnl incremented). If another word appears as argument 1 ($1),

dnl then no action is taken, which is correct for a derived

A.3. VERIFY M4 MACROS 197

dnl type.

dnl $2 - The rank of the variable, between zero and seven (default =
dnl zero) .

dnl $3 - If anything appears here, then the variable is #*not* declared

dnl to be a pointer, but otherwise it is. An exception is that
dnl scalars are never declared to be pointers.
define([typel,

[ifelse(

[$1], [reall,

[real (kind=KIND(m4_indir(real$kind)))mé_indir (pnt$dim,$2,$3)],
[$1], [integer],

[integer (kind=KIND(1))m4_indir (pnt$dim,$2,$3)],
[$1], [logicall,

[logical (kind=KIND(.true.))m4_indir(pnt$dim,$2,$3)],
[$1], [character],

[character (len=$2)m4_indir(pnt$dim,$3,$4)],
[$11, 01,

[[typell,
[[typel ($%x)1)1)

dnl Define a changetype macro which interprets real and integer type
dnl conversions correctly and emits an error message if incorrectly
dnl called.

define([changetype],
[ifelse(
[$1], [reall],
[REAL ($2, KIND(m4_indir(real$kind)))],
[$1], [integer],
[INT($2, KIND(1))],
[m4_die([Error in changetype command.])])])

A.3 Verify m4 Macros

The main documentation of the Verify m4 Macros in section 6.3 contains additional explanation of this code
listing.

dnl

dnl Author: Michael L. Hall

dnl P.0. Box 1663, MS-D409, LANL
dnl Los Alamos, NM 87545

dnl ph: 505-665-4312

dnl email: hall@lanl.gov

dnl

dnl Created on: 02/19/98

dnl Date: 09/18/00, 20:45:35

dnl Version: 6.0

dnl Initialize the DEBUG_LEVEL and WARNING_LEVEL to zero if they

198 APPENDIX A. M4 PREPROCESSING CODE LISTINGS

dnl are not already defined.

ifdef ([DEBUG_LEVEL], [

1,[
define ([DEBUG_LEVEL], 0)
D

ifdef ([WARNING_LEVEL], [
1.

define ([WARNING_LEVEL], 0)
D

dnl Set the default communication style.

define ([VERIFY_COMMUNICATION], [Globall)

dnl Define the VERIFY macro.

define ([VERIFY], [
ifelse(m4_eval (DEBUG_LEVEL >= $2), 1, [
define ([HIDE], [1)

]1,m4_eval (DEBUG_LEVEL == -1), 1, [
define ([HIDE], [[!'11)

1,[
define ([HIDE], [[!11)

D)

define ([COMMAND_TEXT] ,m4_changequote(["],["])$1[Im4_changequote("[","]1"))
ifelse(VERIFY_COMMUNICATION, Global, [

HIDE if (.not. Global_ ALL($1)) then

HIDE if (this_is_IO_PE) then

HIDE write (6,%) "Verification failed: ", &
HIDE “COMMAND_TEXT, ", &

HIDE "file __file__, ", &

HIDE "line __line__."

HIDE end if
HIDE call Abort

HIDE end if

1,1
HIDE if (.not. ($1)) then
HIDE write (6,*) "Verification failed: ", &
HIDE “COMMAND_TEXT, ", &
HIDE "file __file__, ", &
HIDE "line __line__."
HIDE stop
HIDE end if

D

undefine ([COMMAND_TEXT])

undefine ([HIDE])

D

dnl Define the WARN_IF macro.

A.4. REPLICATE M4 MACROS 199

define ([WARN_IF], [

ifelse(m4_eval (WARNING_LEVEL >= $2), 1, [
define ([HIDE], [])

],m4_eval (WARNING_LEVEL == -1), 1, [
define([HIDE], [[!]1]1)

1,
define([HIDE], [[!]])

D

define ([COMMAND_TEXT] ,m4_changequote(["], ["])$1[Im4_changequote("[","]"))

ifelse (VERIFY_COMMUNICATION, Global, [
HIDE if (Global_ANY($1)) then
HIDE if (this_is_IO0_PE) then

HIDE write (6,*) "Warning - test failed: ", &
HIDE "COMMAND_TEXT, ", &
HIDE "file __file__, ", &
HIDE "line __line__."
HIDE end if
HIDE end if
1,[
HIDE if ($1) then
HIDE write (6,*) "Warning - test failed: ", &
HIDE "COMMAND_TEXT, ", &
HIDE "file __file__, ", &
HIDE "line __line__."
HIDE end if
D)
undefine ([COMMAND_TEXT])
undefine ([HIDE])

D

A.4 Replicate m4 Macros

The main documentation of the Replicate m4 Macros in section 6.4 contains additional explanation of this
code listing.

dnl

dnl Author: Michael L. Hall

dnl P.0. Box 1663, MS-D409, LANL
dnl Los Alamos, NM 87545

dnl ph: 505-665-4312

dnl email: hall@lanl.gov

dnl

dnl Created on: 12/04/98

dnl Date: 03/21/00, 17:18:38

dnl Version: 4.9

dnl Define the REPLICATE macro.

define ([REPLICATE], [

200 APPENDIX A. M4 PREPROCESSING CODE LISTINGS

forloop([i]l, 0, 7, [define([REP_NUMBER],[i]) REPLICATE_ROUTINE(i)])
D

dnl Define the REPLICATE_ARRAYS macro.

define ([REPLICATE_ARRAYS], [
forloop([il, 1, 7, [define([REP_NUMBER],[i]) REPLICATE_ROUTINE(i)])
D

dnl Define the ARRAY_ONLY macro.

define ([ARRAY_ONLY],
[ifelse(
[0], REP_NUMBER,
[I]]
HD

dnl Define the SCALAR_ONLY macro.

define ([SCALAR_ONLY],
[ifelse(
[0], REP_NUMBER,
1,
[tHn

dnl Define the REP_EXPAND command, which expands text with a glorified do-loop.
dnl The arguments are:

dnl REP_NUMBER - The number of iterations.

dnl $1 - Beginning text that is present if the iteration count is non-zero.
dnl $2 - The text to be repeated in each iteration. The iteration variable,
dnl i, may be used in this text.

dnl $3 - Separator text to be put between iterations.

dnl $4 - Final text that is present if the iteration count is non-zero.

dnl So, an iteration count of "0" yields no output, and an iteration count
dnl of "4" yields:

dnl $1$2$3$2$3$2$3$28%4
dnl Note that the separator text ($3) appears only 3 times.

define ([REP_EXPAND],
[ifelse([0], REP_NUMBER,
1,
[$1[1forloop([i]l, 1, 1, [$2])])dnl
ifelse(m4_eval (REP_NUMBER >= 2), 1,
[forloop([il, 2, REP_NUMBER, [$3][$2])])dnl
ifelse([0], REP_NUMBER,
a,

A.4. REPLICATE M4 MACROS

[$41)1)

dnl Define the REPLICATE_INTERFACE macro.

define ([REPLICATE_INTERFACE], [

interface $1
forloop([il, 0, 7, [module procedure $2_[]i
1)dnl

end interface

D

dnl Define some useful macros based on the REP_EXPAND macro.
dnl REP_DECLARE: form --> real :: varl, var2, var3

dnl $1 - Declaration type (everything up to the double colon).
nman

dnl $2 - Variable name to replicate, which should contain an "i
dnl for the iteration number.

define ([REP_DECLARE],
[REP_EXPAND([$1 :: 1, [$21, [, 1, [HD)

dnl REP_ALLOCATE: form --> ALLOCATE(R(varl, var2, var3))

dnl $1 - Variable to allocate.
dnl $2 - Dimensioning variable name to replicate, which should
dnl contain an "i" for the iteration number.

dnl $3 - Name for the status variable.

define ([REP_ALLOCATE],
[REP_EXPAND ([ALLOCATE($1(1, [$2], [, 1, [), stat=$3)1)1)

dnl REP_ARGS: form --> , varl, var2, var3

dnl

dnl $1 - Variable name to replicate, which should contain an "i"
dnl for the iteration number.

define ([REP_ARGS],
[REP_EXPAND([, 1, [$11, [, 1, D)

dnl Input text used to generate documentation:

dnl module test_replicate

dnl REPLICATE_INTERFACE([Generic_Routine], [Specific_Routine])
dnl contains

dnl

dnl define([REPLICATE_ROUTINE], [

dnl function Specific_Routine_$1 (R[JREP_ARGS([var[]i]))

dnl type(real,$1) :: R

dnl REP_DECLARE([type (integer)], [var[]lil)

dnl REP_ALLOCATE(R, [var[]lil, [status])

201

202 APPENDIX A. M4 PREPROCESSING CODE LISTINGS

dnl ARRAY_ONLY DEALLOCATE(R)

dnl SCALAR_ONLY R = 999.

dnl <other routine contents>

dnl end function Specific_Routine_$1
dnl

dnl 1)

dnl REPLICATE
dnl end module test_replicate

A.5 Superclass m4 Macros

The main documentation of the Superclass m4 Macros in section 6.5 contains additional explanation of this
code listing.

dnl

dnl Author: Michael L. Hall

dnl P.0. Box 1663, MS-D409, LANL
dnl Los Alamos, NM 87545

dnl ph: 505-665-4312

dnl email: hall@lanl.gov

dnl

dnl Created on: 1/20/99

dnl Date: 03/21/00, 17:19:14

dnl Version: 4.6

dnl The MAKE_INTERFACES macro expands into standard interface
dnl specifications using the arguments:

dnl $1 - Specific Class Suffix
dnl $2 - Generic Interface Names (separated by spaces)

define ([MAKE_INTERFACES], [
public :: m4_patsubst(m4_shift($e), [1, [, 1)

fortext ([BASENAME], m4_shift($@), [
interface BASENAME
module procedure BASENAME[]_[]1$1
end interface
DD
dnl MAKE_INTERFACES([One], [Initialize Verify_State Finalize])

dnl The SUPERCLASS_USE_ASSOCIATIONS macro outputs the needed "use
dnl association" statements based on the definition of SUBCLASSES,
dnl which should be a space-delimited list of the subclasses.

define ([SUPERCLASS_USE_ASSOCIATIONS], [
fortext ([subclass], SUBCLASSES, [
use subclass[]_Class

DD

A.5. SUPERCLASS M4 MACROS 203

dnl The SUPERCLASS_TYPE macro outputs a standard superclass type
dnl definition. It requires the following definitions:

dnl

dnl - SUPERCLASS should already be defined to be the name of the
dnl superclass.

dnl

dnl - SUBCLASSES should already be defined to be a space-delimited
dnl list of the subclasses.

define ([SUPERCLASS_TYPE], [
type SUPERCLASS[]_type
type(character,80) :: Subclass
fortext ([subclass], SUBCLASSES, [
type(subclass[]_type) :: subclass
D
end type SUPERCLASS[]_type
D

dnl Define the SUPERCLASS_DECLARATIONS macro, which is used internally
dnl by the SUPERCLASS_ROUTINE and SUPERCLASS_FUNCTION macros. This macro
dnl takes each group of three arguments, expands them in a declaration
dnl form like so:

dnl $1 :: $2 ! $3

dnl and shifts them off the stack. It then continues with the next
dnl group of three arguments until there are no more arguments.

define ([SUPERCLASS_DECLARATIONS], [
ifelse($#, O, ,
$#, 1, [$1],
$#, 2, [$1 :: $2],
$#, 3, [$1 :: $2 [!] $3],
[$1 :: $2 [!] $3 SUPERCLASS_DECLARATIONS (m4_shift(m4_shift(m4_shift($@))))]
D

dnl Define the SUPERCLASS_ARGUMENTS macro, which is used internally

dnl by the SUPERCLASS_ROUTINE and SUPERCLASS_FUNCTION macros. This macro
dnl takes each group of three arguments (in the same form as the

dnl SUPERCLASS_DECLARATIONS argument list) and pulls out the second

dnl argument (the actual variable) only, like so:

dnl , $2

dnl and shifts the original three arguments off the stack. It then
dnl continues with the next group of three arguments until there are
dnl no more arguments. At the end of this operation, a variable list

dnl has been extracted in this form:

dnl , varl, var2, var3, var4

204 APPENDIX A. M4 PREPROCESSING CODE LISTINGS

define ([SUPERCLASS_ARGUMENTS] ,
[ifelse($#, O, ,

$#, 1, 3
$#, 2, [, $2],
$#, 3, [, 821,

[, $2[]1SUPERCLASS_ARGUMENTS (m4_shift(m4_shift (m4_shift($@))))]1)]1)

dnl Define the SUPERCLASS_ROUTINE macro, which expands into a complete
dnl subroutine for the superclass. This subroutine dynamically

dnl dispatches calls to the superclass to the correct subclass routine.
dnl There are some restrictions that must be true for this macro to
dnl behave correctly:

dnl

dnl - SUPERCLASS should already be defined to be the name of the

dnl superclass.

dnl

dnl - SUBCLASSES should already be defined to be a space-delimited

dnl list of the subclasses.

dnl

dnl - The argument list for the superclass subroutine call must be the
dnl same as the argument list for all of the subclass subroutine calls,
dnl with the exception that the subclass calls are passed a component
dnl of the superclass derived type corresponding to that subclass

dnl instead of the entire superclass derived type.

dnl

dnl - The superclass type must correspond to the type generated by the
dnl the SUPERCLASS_TYPE macro.

dnl

dnl The arguments for the SUPERCLASS_ROUTINE macro are:

dnl

dnl $1 - Generic Routine (and Interface) Name.
dnl $(2 + n*3) - Type declaration for an additional variable to be added

dnl to the argument list.

dnl $(3 + n*3) - Variable name for an additional variable to be added
dnl to the argument list.

dnl $(4 + n*3) - Comment for an additional variable to be added to the
dnl argument list.

dnl

dnl where n may be 0, 1, 2, etc., and the only required macro argument is
dnl the first one.

define ([SUPERCLASS_ROUTINE], [
pushdef ([ROUT_NAME], [$1_[]SUPERCLASS])
pushdef ([VARLIST], [m4_shift($e)])
pushdef ([ARGS], [SUPERCLASS_ARGUMENTS (VARLIST)])

subroutine ROUT_NAME (SUPERCLASS[]ARGS)

type (SUPERCLASS[]_type) SUPERCLASS
SUPERCLASS_DECLARATIONS (VARLIST)

A.5. SUPERCLASS M4 MACROS

select case (SUPERCLASSY%Subclass)

fortext ([subclass], SUBCLASSES, [
case ("subclass")

call $1 (SUPERCLASSY%subclass[]ARGS)
n

case default

write (6,%) ’Error: no ’, SUPERCLASSY%Subclass, ’ in SUPERCLASS[]_Class.’

end select
end subroutine ROUT_NAME

popdef ([ROUT_NAME])
popdef ([VARLIST])
popdef ([ARGS])

n

dnl Define the SUPERCLASS_FUNCTION macro, which expands into a complete
dnl function for the superclass. This subroutine dynamically

dnl dispatches calls to the superclass to the correct subclass function.

dnl There are some restrictions that must be true for this macro to
dnl behave correctly:

dnl

dnl - SUPERCLASS should already be defined to be the name of the

dnl superclass.

dnl

dnl - SUBCLASSES should already be defined to be a space-delimited

dnl list of the subclasses.

dnl

dnl - The argument list for the superclass function call must be the
dnl same as the argument list for all of the subclass function calls,
dnl with the exception that the subclass calls are passed a component
dnl of the superclass derived type corresponding to that subclass
dnl instead of the entire superclass derived type.

dnl

dnl - The superclass type must correspond to the type generated by the
dnl the SUPERCLASS_TYPE macro.

dnl

dnl The arguments for the SUPERCLASS_FUNCTION macro are:

dnl $1 - Generic Function (and Interface) Name.
dnl $2 - Type declaration for the function.

dnl $(3 + n*3) - Type declaration for an additional variable to be added

dnl to the argument list.
dnl $(4 + n*3) - Variable name for an additional variable to be added
dnl to the argument list.

dnl $(5 + n*3) - Comment for an additional variable to be added to the

dnl argument list.

205

206 APPENDIX A. M4 PREPROCESSING CODE LISTINGS

dnl where n may be 0, 1, 2, etc., and the only required macro arguments are
dnl the first two.

define ([SUPERCLASS_FUNCTION], [
pushdef ([FNCT_NAME], [$1_[]SUPERCLASS])
pushdef ([VARLIST], [m4_shift(m4_shift($@))])
pushdef([ARGS], [SUPERCLASS_ARGUMENTS (VARLIST)])

function FNCT_NAME (SUPERCLASS[]JARGS)
type (SUPERCLASS[]1_type) SUPERCLASS

$2 :: $1, FNCT_NAME
SUPERCLASS_DECLARATIONS (VARLIST)

select case (SUPERCLASSYSubclass)

fortext ([subclass], SUBCLASSES, [
case ("subclass")

FNCT_NAME = $1 (SUPERCLASSYsubclass[]ARGS)
D

case default
write (6,*) ’Error: no ’, SUPERCLASSYSubclass, ’ in SUPERCLASS[]_Class.’
end select
end function FNCT_NAME
popdef ([FNCT_NAME])
popdef ([VARLIST])
popdef ([ARGS])
D

dnl Input text used to generate documentation:

dnl define([SUPERCLASS], [Matrix])
dnl define([SUBCLASSES], [One Two Three])

dnl module SUPERCLASS[]_Class

dnl SUPERCLASS_USE_ASSOCIATIONS
dnl SUPERCLASS_TYPE

dnl contains
dnl SUPERCLASS_ROUTINE([Initialize],
dnl [type(real)], [al, [The a variablel,

dnl [type(integer), intent(in)], [b], [The b variable])

dnl SUPERCLASS_FUNCTION([Verify_State], [type(logical)l,

A.6. UNIT TEST M4 MACROS 207

dnl [type(real)], [b], [The b variable])
dnl SUPERCLASS_ROUTINE([Finalize],

dnl [type(real)], [c], [The c variablel,
dnl [type(real)], [d], [The 4 variablel])

dnl end module SUPERCLASS[]_Class

A.6 Unit Test m4 Macros

The main documentation of the Unit Test m4 Macros in section 6.6 contains additional explanation of this
code listing.

dnl

dnl Author: Michael L. Hall

dnl P.0. Box 1663, MS-D413, LANL
dnl Los Alamos, NM 87545

dnl ph: 505-665-4312

dnl email: Hall@LANL.gov

dnl

dnl Created on: 12/07/98
dnl CVS Info: $Id: unit_test.m4,v 1.12 2004/02/26 18:59:43 hall Exp $

dnl Define a macro that toggles output.

ifdef ([UNIT_TEST],
[define ([TESTWRITE], [writel)],
[define ([TESTWRITE], [! writel)])

dnl Define a macro that comments out code if
dnl unit testing is not being done.

ifdef ([UNIT_TEST],
[define ([IF_UNIT_TEST], [1)1],
[define ([IF_UNIT_TESTI, [! 1)1)

dnl Define a macro that comments out code if
dnl unit testing is being done.

ifdef ([UNIT_TEST],
[define ([IF_NOT_UNIT_TEST], [! 1)1,
[define ([IF_NOT_UNIT_TEST], [1)1)

208 APPENDIX A. M4 PREPROCESSING CODE LISTINGS

A.7 Flags Module Code Listing

The main documentation of the Flags Module in § 6.7 on page 31 contains additional explanation of this
code listing.

1
! Author: Michael L. Hall

! P.0. Box 1663, MS-D413, LANL
! Los Alamos, NM 87545

! ph: 505-665-4312

! email: Hall@QLANL.gov

1

! Created on: 1/15/99
! CVS Info: $Id: flags.F90,v 1.2 2006/10/12 18:34:22 hall Exp $

module Caesar_Flags_Module

! Start up with everything untyped and public.
! Note: this module contains no private information.

implicit none
public

! Initialization and finalization flags, used to set initial and
! final values for intrinsics.

type(integer), parameter :: initialize_integer_flag=0, &
finalize_integer_flag=6622130
type(real), parameter :: initialize_real_flag=0.d0, &
finalize_real_flag=662.2130d0
type(logical), parameter :: initialize_logical_flag=.false., &
finalize_logical_flag=.false.
type(character,Q), parameter :: initialize_character_flag=’Undefined’, &

finalize_character_flag=’Finalized’

! Initialization flags, used to indicate when a derived type has
! been initialized.

type(integer), parameter :: uninitialized flag=0, &
initialized_flag=6622130

end module Caesar_Flags_Module

A.7.1 Flags Class Unit Test Program

This lightly commented program performs a unit test on the Flags Class, which is described in § ?? on page
29

program Unit_Test
write(6,*) ’There is no Unit Test for the Flags Module.’
end

A.8. NUMBERS MODULE CODE LISTING 209

A.8 Numbers Module Code Listing

The main documentation of the Numbers Module in § 6.8 on page 32 contains additional explanation of this
code listing.

1
! Author: Michael L. Hall

! P.0. Box 1663, MS-D413, LANL
! Los Alamos, NM 87545

! ph: 505-665-4312

! email: Hall at LANL dot gov
1

! Created on: 6/1/86
! CVS Info: $Id: numbers.F90,v 1.2 2006/11/03 00:44:50 hall Exp $

module Caesar_Numbers_Module

! Start up with everything untyped and public.
! Note: this module contains no private information.

implicit none
public

! Define the variables used in the place of numbers.
! Numbers 0-9.

type(real), parameter :: zero=0.d0, one=1.d0, two=2.d0, three=3.d0, &
four=4.d0, five=5.d0, six=6.d0, seven=7.d0, &
eight=8.d0, nine=9.d0

! Numbers 10-19.

type(real), parameter :: ten=10.dO0, eleven=11.4d0, twelve=12.d0, &
thirteen=13.d0, fourteen=14.d0, fifteen=15.40, &
sixteen=16.d0, seventeen=17.d0, eighteen=18.40, &
nineteen=19.d0

! Numbers 20-100, by tens.

type(real), parameter :: twenty=20.d0, thirty=30.d0, forty=40.d0, &
fifty=50.d0, sixty=60.d0, seventy=70.d0, &
eighty=80.d0, ninety=90.d0, hundred=100.d0

! Fractions.
type(real), parameter :: half=one/two, third=one/three, &
fourth=one/four, fifth=one/five, &
sixth=one/six, seventh=one/seven, &
&

eighth=one/eight, ninth=one/nine,
tenth=one/ten

! Forms of pi.

210 APPENDIX A. M4 PREPROCESSING CODE LISTINGS

type(real), parameter :: &
pi=3.141592653589793238462643383279d0, sqrtpi=1.7724538509055d0, &
invpi=one/pi, pisqr=pi*pi, fourthirdspi=four*pi/three, &
twopi=two*pi, threepi=three*pi, fourpi=four*pi, &
halfpi=pi/two, thirdpi=pi/three, fourthpi=pi/four

! Decimal multipliers.

type(real), parameter :: deca=1.d1, hecto=1.d42, kilo=1.d3, &
mega=1.d6, giga=1.d9, tera=1.d12, &
peta=1.d15, exa=1.d18, zetta=1.d21, &
yotta=1.d24, &
deci=1.d-1, centi=1.d-2, milli=1.4-3, &
micro=1.d-6, nano=1.d-9, pico=1.d4-12, &
femto=1.d-15, atto=1.d-18, zepto=1.d-21, &

yocto=1.d-24

end module Caesar_Numbers_Module

A.8.1 Numbers Class Unit Test Program

This lightly commented program performs a unit test on the Numbers Class, which is described in § ?? on
page 77.

program Unit_Test
write(6,*) ’There is no Unit Test for the Numbers Module.’
end

Appendix B

Intrinsics Module Code Listing

The main documentation of the Intrinsics Module in chapter 7 on page 35 contains additional explanation
of this code listing.

1
! Author: Michael L. Hall

! P.0. Box 1663, MS-D413, LANL
! Los Alamos, NM 87545

! ph: 505-665-4312

! email: Hall@LANL.gov

1

! Created on: 10/04/99
! CVS Info: $Id: intrinsics.F90,v 1.3 2004/01/12 23:04:18 hall Exp $

module Caesar_Intrinsics_Module
! Global use associations.
use Caesar_Real_Class
use Caesar_Logical_Class
use Caesar_Status_Class
use Caesar_Integer_Class

use Caesar_Character_Class

! Start up with everything untyped and public.
! Note: this module contains no private information.

implicit none
public

end module Caesar_Intrinsics_Module

B.1 Status Class Code Listing

The main documentation of the Status Class in § 7.1 on page 35 contains additional explanation of this code
listing.

211

212 APPENDIX B. INTRINSICS MODULE CODE LISTING

1
! Author: Michael L. Hall

! P.0. Box 1663, MS-D413, LANL
! Los Alamos, NM 87545

! ph: 505-665-4312

! email: Hall@LANL.gov

1

! Created on: 03/23/99
! CVS Info: $Id: status.F90,v 7.7 2007/01/23 19:30:53 hall Exp $

module Caesar_Status_Class
! Global use associations - none.
! Start up with everything untyped and private.

implicit none
private

! Public procedures.

public :: Initialize, Finalize, Valid_State
public :: Assignment (=), Operator (==), Operator (/=), Consolidate, &
Equal, Error, Get, Normal, Not_Equal, Set, Warning

interface Initialize
module procedure Initialize_Status
module procedure Initialize_Status_Vector
end interface

interface Finalize
module procedure Finalize_Status
module procedure Finalize_Status_Vector
end interface

interface Valid_State
module procedure Valid_State_Status
module procedure Valid_State_Status_Vector
end interface

interface Assignment (=)
module procedure Set_Status
module procedure Get_Status_0Output
module procedure Consolidate_Status
end interface

interface Operator (==
module procedure Status_Equal_Status
module procedure Status_Equal_Character
module procedure Character_Equal_Status
end interface

interface Operator (/=)
module procedure Status_Not_Equal_Status

B.1. STATUS CLASS CODE LISTING 213

module procedure Status_Not_Equal_Character
module procedure Character_Not_Equal_Status
end interface

interface Consolidate
module procedure Consolidate_Status
end interface

interface Equal
module procedure Status_Equal_Status
module procedure Status_Equal_Character
module procedure Character_Equal_Status
end interface

interface Error
module procedure Error_Status
end interface

interface Get
module procedure Get_Status_0Output
end interface

interface Normal
module procedure Normal_Status
end interface

interface Not_Equal
module procedure Status_Not_Equal_Status
module procedure Status_Not_Equal_Character
module procedure Character_Not_Equal_Status
end interface

interface Set
module procedure Set_Status
end interface

interface Warning
module procedure Warning_Status
end interface

! Public type definitions.
public :: Status_type
type Status_type

private

type(integer) :: status
end type Status_type
! Global class variables.
type(integer), parameter :: &

NFlags=10, & ! Number of Flag types.
output_length = 35, & ! Length of the output string.

214 APPENDIX B. INTRINSICS MODULE CODE LISTING

selector_length
severity_length

16, & ! Length of the selector string.
7 ! Length of the severity string.

type Flag ! Status flag derived type.
type (character,selector_length) :: selector
type (character,output_length) :: output_string
type(character,severity_length) :: severity
end type Flag

! This is the main list of possible flags (or values for a status variable).

Note: when adding a new flag below, remember to:

- add the new selector to the list in the

!

!

!

! - update NFlags above, and

!

! Set_Status routine comments.
!
!

Flag order is unimportant.

type(Flag), dimension(1:NFlags), parameter :: &
status_flag = (/ &
! Selector Output String Severity
Flag(’Unset ’, ’Status Initialized But Unset ’, ’Normal ’), &
Flag(’Success ’, ?Successful Procedure Execution ’, ’Normal ’), &
Flag(’Multiple Error °’, ’Multiple Error Types in Procedure °’, ’Error ’), &
Flag(’Multiple Warning’, ’Multiple Warning Types in Procedure’, ’Warning’), &
Flag(’Memory Warning ’, ’Memory Allocation Warning ’, ’Warning’), &
Flag(’Memory Error ’, ’Memory Allocation Error >, ’Error), &
Flag(’File Error ’, ’File Access Error ’, ’Error ’), &
Flag(’CGNS Error ’, ’CGNS Error ’, ’Error ’), &
Flag(’CGNS No Node ’, ’CGNS NODE_NOT_FOUND Error ’, ’Error ’), &
Flag(’CGNS Bad Path ’, ?CGNS INCORRECT_PATH Error ’, ’Error ’) &
/)
! ___
contains

The Status Class contains the following routines which are listed in separate sections:

Initialize Status (§ B.1.1, page 215)
Initialize_Status_Vector (§ B.1.2, page 215)
Finalize Status (§ B.1.3, page 216)
Finalize_Status_Vector (§ B.1.4, page 217)
Valid_State_Status (§ B.1.5, page 217)
Valid_State_Status_Vector (§ B.1.6, page 218)
Error_Status (§ B.1.10, page 223)

Warning Status (§ B.1.18, page 228)

B.1. STATUS CLASS CODE LISTING 215

Normal Status (§ B.1.12, page 224)

Set_Status (§ B.1.13, page 225)
Get_Status_Output (§ B.1.11, page 224)
Status_Equal_Status (§ B.1.15, page 226)
Status_Not_Equal Status (§ B.1.17, page 228)
Status_Equal_Character (§ B.1.14, page 226)
Status_Not_Equal Character (§ B.1.16, page 227)
Character_Equal_Status (§ B.1.7, page 219)
Character_Not_Equal Status (§ B.1.8, page 219)

Consolidate_Status (§ B.1.9, page 220)

end module Caesar_Status_Class

B.1.1 Initialize_Status Procedure

The main documentation of the Initialize Status Procedure in § 7.1.1 on page 36 contains additional expla-
nation of this code listing.

subroutine Initialize_Status (S)
! OQutput variable.

type(Status_type), intent(out) :: S ! Status to be initialized.

! Verify requirements - none.

! Initializations.

S = ’Unset’

! Verify guarantees.
VERIFY(Valid_State(S),1) ! S is now valid.

return
end subroutine Initialize_Status

B.1.2 Initialize_Status_Vector Procedure

The main documentation of the Initialize Status_Vector Procedure in § 7.1.2 on page 36 contains additional
explanation of this code listing.

216 APPENDIX B. INTRINSICS MODULE CODE LISTING

subroutine Initialize_Status_Vector (S)
! OQutput variable.

! Status vector to be initialized:
type(Status_type), dimension(:), intent(out) :: S

! Internal variable.

type(integer) :: i ! Loop counter.

! Verify requirements - none.
! Initializations.
do i = 1, SIZE(S)
call Initialize (S(i))
end do
! Verify guarantees.

VERIFY(Valid_State(S),1) ! S is now valid.

return
end subroutine Initialize_Status_Vector

B.1.3 Finalize_Status Procedure

The main documentation of the Finalize_Status Procedure in § 7.1.3 on page 37 contains additional expla-
nation of this code listing.

subroutine Finalize_Status (S)
! Input/Output variable.

type(Status_type), intent(inout) :: S ! Status to be finalized.

! Verify requirements.
VERIFY(Valid_State(S),1) ! S is valid.
! Finalizations.

Shstatus = 0

! Verify guarantees.

B.1. STATUS CLASS CODE LISTING 217

VERIFY(.not.(Valid_State(S)),1) ! S is no longer valid.

return
end subroutine Finalize_Status

B.1.4 Finalize_Status_Vector Procedure

The main documentation of the Finalize Status_Vector Procedure in § 7.1.4 on page 37 contains additional
explanation of this code listing.

subroutine Finalize_Status_Vector (S)
! Input/Output variable.

! Status vector to be finalized:
type(Status_type), dimension(:), intent(inout) :: S

! Internal variable.
type(integer) :: i ! Loop counter.
! Verify requirements.
VERIFY(Valid_State(S),1) ! S is valid.
! Finalizations.
do i = 1, SIZE(S)
call Finalize (S(i))
end do
! Verify guarantees.

VERIFY(.not.(Valid_State(S)),1) ! S is no longer valid.

return
end subroutine Finalize_Status_Vector

B.1.5 Valid_State_Status Procedure

The main documentation of the Valid_State_Status Procedure in § 7.1.5 on page 37 contains additional
explanation of this code listing.

function Valid_State_Status (S) result(Valid)

! Input variable.

218 APPENDIX B. INTRINSICS MODULE CODE LISTING

type(Status_type), intent(in) :: S ! Status to be checked.
! OQutput variable.

type(logical) :: Valid ! Logical state.

! Start out true.

Valid = .true.

! Make sure the status variable is in range.

Valid = Valid .and. S¥status <= NFlags
Valid = Valid .and. SY%status >= 1

return
end function Valid_State_Status

B.1.6 Valid_State_Status_Vector Procedure

The main documentation of the Valid_State_Status_Vector Procedure in § 7.1.6 on page 37 contains additional
explanation of this code listing.

function Valid_State_Status_Vector (S) result(Valid)
! Input variable.
type(Status_type), dimension(:), intent(in) :: S ! Status to be checked.
! OQutput variable.
type(logical) :: Valid ! Logical state.
! Internal variable.
type(integer) :: i ! Loop counter.
! Start out true.
Valid = .true.
! Check each element.
do i = 1, SIZE(S)
Valid = Valid .and. Valid_State(S(i))

end do

return

B.1. STATUS CLASS CODE LISTING 219

end function Valid_State_Status_Vector

B.1.7 Character_Equal_Status Procedure

The main documentation of the Character_Equal _Status Procedure in § 7.1.7 on page 38 contains additional
explanation of this code listing.

function Character_Equal_Status (C, SS) result(Equal)

! Input variables.

type(Status_type), intent(in) :: SS ! Status variable to be compared.
type(character,*), intent(in) :: C ! Selector flag string to be compared.

! Output variable.

type(logical) :: Equal ! Equality boolean.

! Verify requirements.
VERIFY(Valid_State(SS),1) ! SS is valid.
! Check equality.
Equal = status_flag(SS/status)selector ==
! Verify guarantees.

! Equal should be what it was set to.
VERIFY(Equal .eqv. (status_flag(SS%status)’selector == C),2)

return
end function Character_Equal_Status

B.1.8 Character_Not_Equal_Status Procedure

The main documentation of the Character Not_Equal _Status Procedure in § 7.1.8 on page 38 contains addi-
tional explanation of this code listing.

function Character_Not_Equal_Status (C, SS) result(Not_Equal)

! Input variable.

type(Status_type), intent(in) :: SS ! Status variable to be compared.
type(character,*), intent(in) :: C ! Selector flag string to be compared.

! OQutput variable.

220 APPENDIX B. INTRINSICS MODULE CODE LISTING

type(logical) :: Not_Equal ! Nonequality boolean.

! Verify requirements.

VERIFY (Valid_State(SS),1) ! SS is valid.

! Check nonequality.
Not_Equal = status_flag(SS/status)¥selector /= C
! Verify guarantees.

! Not_Equal should be what it was set to.
VERIFY (Not_Equal .eqv. (status_flag(SS/status)¥selector /= C),2)

return
end function Character_Not_Equal_Status

B.1.9 Consolidate_Status Procedure

The main documentation of the Consolidate_Status Procedure in § 7.1.9 on page 39 contains additional
explanation of this code listing.

subroutine Consolidate_Status (Consolidated_S, Multiple_S)
! Input variable.

! Vector of status variables to be consolidated:
type(Status_type), intent(in), dimension(:) :: Multiple_S

! OQutput variable.
type(Status_type), intent(out) :: Consolidated_S ! Consolidated status.
! Internal variable.

type(integer) :: i ! Loop counter.

! Verify requirements.

VERIFY(Valid_State(Multiple_S),1) ! Multiple_S is valid.
The following table shows the value of Consolidated_S after it has been
combined with a single value from the vector Multiple_S, based on the

1
!
! previous value of Consolidated_S:
1
1

Multiple_S(i)

B.1. STATUS CLASS CODE LISTING

!
! Unset Success ME MW Error Warning
! o +
! Unset | Unset Success ME MW Error Warning |
! Success | Success Success ME MW Error Warning |
! ME | ME ME ME ME ME ME |
! Consolidated_S MW | MW MW ME MW ME MW |
! (previous) Error | Error Error ME ME MEx* ME |
! Warning | Warning Warning ME MW ME MW* |
! o +
!
! ME: Multiple Error
! MW: Multiple Warning
! *: Multiple Error or Warning is only set
! if the two errors or warnings differ.
!
! Notice that this matrix is symmetric.
! Start out Unset.
Consolidated_S = ’Unset’
! Loop over Multiple_S vector.
do i = 1, SIZE(Multiple_S)
! Switch on Multiple_S(i).
select case (status_flag(Multiple_S(i)Jstatus)’selector)
! Multiple_S(i) = ’Unset’
!
! Consolidated_S (old): Unset Success ME MW Error Warning
! Consolidated_S (new): Unset Success ME MW Error Warning
case (’Unset’)
! Do not modify Consolidated_S.
! Multiple_S(i) = ’Success’
!
! Consolidated_S (old): Unset Success ME MW Error Warning
! Consolidated_S (new): Success Success ME MW Error Warning
case (’Success’)
if (status_flag(Consolidated_S’%status)’selector == ’Unset’) then
Consolidated_S = ’Success’
end if
! Multiple_S(i) = ’Multiple Error’
!
! Consolidated_S (old): Unset Success ME MW Error Warning
! Consolidated_S (new): ME ME ME ME ME ME

221

222

APPENDIX B. INTRINSICS MODULE CODE LISTING

case (’Multiple Error’)
Consolidated_S = ’Multiple Error’

! Multiple_S(i) = ’Multiple Warning’

!

! Consolidated_S (old): Unset Success ME MW Error Warning
! Consolidated_S (new): MW MW ME MW ME MW

case (’Multiple Warning’)

if (Error(Consolidated_S)) then
Consolidated_S = ’Multiple Error’
else
Consolidated_S = ’Multiple Warning’
end if

case default

! Multiple_S(i) = ’Error’

!

! Consolidated_S (old): Unset Success ME MW Error Warning
! Consolidated_S (new): Error Error ME ME ME* ME

if (Error(Multiple_S(i))) then

if (Error(Consolidated_S)) then
if (Consolidated_S /= Multiple_S(i)) then
Consolidated_S = ’Multiple Error’
end if
else if (Warning(Consolidated_S)) then
Consolidated_S = ’Multiple Error’
else
Consolidated_S = Multiple_S(i)
end if

Multiple_S(i) = ’Warning’

Consolidated_S (old): Unset Success ME MW Error Warning
Consolidated_S (new): Warning Warning ME MW ME MW*

else if (Warning(Multiple_S(i))) then

if (Error(Consolidated_S)) then
Consolidated_S = ’Multiple Error’
else if (Warning(Consolidated_S)) then
if (Consolidated_S /= Multiple_S(i)) then
Consolidated_S = ’Multiple Warning’
end if
else
Consolidated_S = Multiple_S(i)
end if

B.1. STATUS CLASS CODE LISTING

! This condition should not be hit.

else
write (6,%*)
end if
end select

! End of loop over Multiple_S vector.
end do
! Verify guarantees.
VERIFY(Valid_State(Consolidated_S),1)
IVERIFY(,2)

return
end subroutine Consolidate_Status

B.1.10 Error_Status Procedure

’Consolidate_Status:

223

Impossible Status Combination Hit.’

! Consolidated_S is valid.

The main documentation of the Error_Status Procedure in § 7.1.10 on page 39 contains additional explanation

of this code listing.

function Error_Status (S) result(Error)
! Input variable.
type(Status_type), intent(in) :: S
! OQutput variable.
type(logical) :: Error
! Verify requirements.
VERIFY(Valid_State(S),1)
! Set error boolean.
Error =
! Verify guarantees.

! Error should be what it was set to.

' S is valid.

status_flag(S/status)severity ==

! Status to be checked.

! Error condition boolean.

Error’

VERIFY (Error .eqv. (status_flag(S)status)/severity == ’Error’),2)

224 APPENDIX B. INTRINSICS MODULE CODE LISTING

return
end function Error_Status

B.1.11 Get_Status_Output Procedure

The main documentation of the Get_Status_Output Procedure in § 7.1.11 on page 40 contains additional
explanation of this code listing.

subroutine Get_Status_QOutput (Status_String, S)
! Input variable.
type(Status_type), intent(in) :: S ! Status.
! OQutput variable.

! Qutput string for this Status.
type(character,*), intent(out) :: Status_String

! Verify requirements.

VERIFY(Valid_State(S),1) !' S is valid.

! Determine which output string is to be set.
Status_String = status_flag(S/status)’output_string
! Verify guarantees.

! Status_String should be what it was set to.
VERIFY(Status_String == status_flag(S/status)joutput_string,2)

return
end subroutine Get_Status_Output

B.1.12 Normal _Status Procedure

The main documentation of the Normal Status Procedure in § 7.1.12 on page 40 contains additional expla-
nation of this code listing.

function Normal_Status (S) result(Normal)

! Input variable.

type(Status_type), intent(in) :: S ! Status to be checked.

B.1. STATUS CLASS CODE LISTING 225

! Output variable.

type(logical) :: Normal ! Normal condition boolean.
! Verify requirements.

VERIFY(Valid_State(S),1) ! S is valid.

! Set normal boolean.

Normal = status_flag(S/status)’severity == ’Normal’

! Verify guarantees.

! Normal should be what it was set to.
VERIFY (Normal .eqv. (status_flag(SYstatus)/severity == ’Normal’),2)

return
end function Normal_Status

B.1.13 Set_Status Procedure

The main documentation of the Set_Status Procedure in § 7.1.13 on page 40 contains additional explanation
of this code listing.

subroutine Set_Status (S, Selector_Flag)
! Input variable.

! String to select status value.
type(character,*), intent(in) :: Selector_Flag

! Qutput variable.

type(Status_type), intent(out) :: S ! Status to be set.
! Internal variable.

type(integer) :: i ! Loop counter.

! Verify requirements.

! Selector_Flag must be one of the possible flags.
VERIFY (ANY (Selector_Flag == status_flagj)selector),1)

! Determine which flag is to be set.

do i = 1, NFlags

226 APPENDIX B. INTRINSICS MODULE CODE LISTING

if (Selector_Flag == status_flag(i)%selector) Systatus = i
end do

! Verify guarantees.
VERIFY(Valid_State(S),1) ! S is now valid.

return
end subroutine Set_Status

B.1.14 Status_Equal_Character Procedure

The main documentation of the Status_Equal_Character Procedure in § 7.1.14 on page 41 contains additional
explanation of this code listing.

function Status_Equal_Character (S, C) result(Equal)

! Input variables.

type(Status_type), intent(in) :: S ! Status variable to be compared.
type(character,*), intent(in) :: C ! Selector flag string to be compared.

! OQutput variable.

type(logical) :: Equal ! Equality boolean.

! Verify requirements.
VERIFY(Valid_State(S),1) ! S is valid.
! Check equality.

Equal = status_flag(S)status)iselector ==
! Verify guarantees.

! Equal should be what it was set to.
VERIFY(Equal .eqv. (status_flag(S/status)¥selector == C),2)

return
end function Status_Equal_Character

B.1.15 Status_Equal_Status Procedure

The main documentation of the Status_Equal Status Procedure in § 7.1.15 on page 41 contains additional
explanation of this code listing.

B.1. STATUS CLASS CODE LISTING 227

function Status_Equal_Status (S1, S2) result(Equal)
! Input variables.

type(Status_type), intent(in) :: S1, S2 ! Status variables to be compared.

! Qutput variable.

type(logical) :: Equal ! Equality boolean.

! Verify requirements.

VERIFY(Valid_State(S1),1) ! S1 is valid.
VERIFY(Valid_State(S2),1) ! S2 is valid.

! Check equality.
Equal = Sl)status == S2Jstatus
! Verify guarantees.

! Equal should be what it was set to.
VERIFY(Equal .eqv. (Slystatus == S2Jstatus),2)

return
end function Status_Equal_Status

B.1.16 Status_Not_Equal_Character Procedure

The main documentation of the Status_Not_Equal_Character Procedure in § 7.1.16 on page 42 contains
additional explanation of this code listing.

function Status_Not_Equal_Character (S, C) result(Not_Equal)

! Input variables.

type(Status_type), intent(in) :: S ! Status variable to be compared.
type(character,*), intent(in) :: C ! Selector flag string to be compared.

! OQutput variable.

type(logical) :: Not_Equal ! Nonequality boolean.

! Verify requirements.
VERIFY(Valid_State(S),1) ! S is valid.

! Check nonequality.

228 APPENDIX B. INTRINSICS MODULE CODE LISTING

Not_Equal = status_flag(S)status)’selector /= C
! Verify guarantees.

! Not_Equal should be what it was set to.
VERIFY (Not_Equal .eqv. (status_flag(S/status)¥%selector /= C),2)

return
end function Status_Not_Equal_Character

B.1.17 Status_Not_Equal _Status Procedure

The main documentation of the Status_Not_Equal _Status Procedure in § 7.1.17 on page 42 contains additional
explanation of this code listing.

function Status_Not_Equal_Status (S1, S2) result(Not_Equal)
! Input variables.
type(Status_type), intent(in) :: S1, S2 ! Status variables to be compared.

! OQutput variable.

type(logical) :: Not_Equal ! Nonequality boolean.

! Verify requirements.

VERIFY(Valid_State(S1),1) ! 81 is valid.
VERIFY(Valid_State(S2),1) ! S2 is valid.

! Check nonequality.
Not_Equal = Siystatus /= S2/status
! Verify guarantees.

! Not_Equal should be what it was set to.
VERIFY (Not_Equal .eqv. (S1)status /= S2)status),2)

return
end function Status_Not_Equal_Status

B.1.18 Warning_Status Procedure

The main documentation of the Warning_Status Procedure in § 7.1.18 on page 42 contains additional expla-
nation of this code listing.

B.1. STATUS CLASS CODE LISTING 229

function Warning_Status (S) result(Warning)
! Input variable.
type(Status_type), intent(in) :: S ! Status to be checked.
! OQutput variable.

type(logical) :: Warning ! Warning condition boolean.

! Verify requirements.

VERIFY(Valid_State(S),1) ! S is valid.

! Set warning boolean.

Warning = status_flag(S)status)iseverity == ’Warning’
! Verify guarantees.

! Warning should be what it was set to.
VERIFY (Warning .eqv. (status_flag(Sistatus)/severity == ’Warning’),2)

return
end function Warning_Status

B.1.19 Status Class Unit Test Program

This lightly commented program performs a unit test on the Status Class, which is described in § 7.1 on
page 35.

program Unit_Test

use Caesar_Status_Class
implicit none

type(integer), parameter :: NStats=12

type(Status_type), dimension(NStats) :: Status
type(Status_type) :: Final_Status
type(character,36) :: status_string

type(integer) :: i, j
! Tnitialize status.

call Initialize (Status)
call Initialize (Final_Status)

! Check state of status.

230

APPENDIX B.

VERIFY(Valid_State(Status),0)
VERIFY(Valid_State(Final_Status),0)

! Testing statements.

Status(2) =
Status(3) =
Status(4) =
Status(b) =
Status(6) =
Status(7) =
Status(8) =
Status(9) =
Status(10) =
Status(11) =
Status(12)

write (6,101)

’Memory Error’
’Memory Error’
’Success’

’Memory Warning’
’Unset’

’Success’

’Memory Warning’
’Multiple Warning’
?Success’
’Multiple Error’
’Multiple Warning’

’Assignment tests:’

do i = 1, NStats
if (Error(Status(i))) write (6,100,advance=’no’) ’Error: ’
if (Warning(Status(i))) write (6,100,advance=’no’) ’Warning: ’
if (Normal (Status(i))) write (6,100,advance=’no’) ’Normal: ’
status_string = Status(i)

write (6,%)
end do

write (6,101)

status_string

’Consolidation tests:’

do i = 1, NStats
do j = i, NStats

Final_Status = Status(i:j)
if (Error(Final_Status)) write (6,100,advance=’no’) ’Error: °’

if (Warning(Final_Status)) write (6,100,advance=’no’) ’Warning: ’
if (Normal(Final_Status)) write (6,100,advance=’no’) ’Normal: ’
status_string = Final_Status
write (6,*) status_string

end do
write (6,%)
end do

! Format statement.

100 format (a)
101 format (/,a,/)

! Check state of status.

VERIFY(Valid_State(Status),0)
VERIFY(Valid_State(Final_Status),0)

! Finalize status.

call Finalize (Status)

INTRINSICS MODULE CODE LISTING

B.2. REAL CLASS CODE LISTING 231

call Finalize (Final_Status)

end

B.2 Real Class Code Listing

The main documentation of the Real Class in § 7.2 on page 43 contains additional explanation of this code
listing.

1
! Author: Michael L. Hall

! P.0. Box 1663, MS-D413, LANL
! Los Alamos, NM 87545

! ph: 505-665-4312

! email: Hall@LANL.gov

1

! Created on: 12/04/98
! CVS Info: $Id: real.F90,v 8.13 2006/10/12 18:30:29 hall Exp $

module Caesar_Real_Class
! Global use associations.

use Caesar_Status_Class
use Caesar_Logical_Class

! Start up with everything untyped and private.

implicit none
private

! Public procedures.

public :: Initialize, Finalize, Valid_State, Valid_State_NP
public :: Operator(.VeryClose.)

public :: MaxVal, MinVal, SUM, VeryClose
REPLICATE_INTERFACE([Initialize], [Initialize_Reall])

REPLICATE_INTERFACE([Finalize], [Finalize_Real])

REPLICATE_INTERFACE([Valid_State], [Valid_State_Real_P])
REPLICATE_INTERFACE([Valid_State_NP], [Valid_State_Real_NP])

interface MaxVal
module procedure MaxVal_Real_Scalar
end interface

interface MinVal
module procedure MinVal_Real_Scalar
end interface

232 APPENDIX B. INTRINSICS MODULE CODE LISTING

interface SUM
module procedure SUM_Real_Scalar
end interface

REPLICATE_INTERFACE([VeryClose], [VeryClose_Reall)
forloop([Dim], [0],[7],[
pushdef ([VeryClose_Real_Dim], expand(VeryClose_Real_Dim))
interface OPERATOR (.VeryClose.)
module procedure VeryClose_Real_Dim
end interface

popdef ([VeryClose_Real_Dim])
D

contains

The Real Class contains the following routines which are listed in separate sections:

Initialize Real (§ B.2.1, page 232)
Finalize Real (§ B.2.2, page 234)
Valid_State_Real (§ B.2.3, page 236)
MaxVal_Real Scalar (§ B.2.4, page 240)
MinVal Real Scalar (§ B.2.5, page 240)
SUM _Real _Scalar (§ B.2.6, page 241)
VeryClose_Real (§ B.2.7, page 241)

end module Caesar_Real_Class

B.2.1 Initialize Real Procedure

The main documentation of the Initialize Real Procedure in § 7.2.1 on page 43 contains additional explana-
tion of this code listing.

subroutine Initialize_Real_0 (R, status)
! Use association information.
use Caesar_Flags_Module, only: initialize_real_flag
! Output variables.

type(real), intent(out) :: R ! Variable to be initialized.
type(Status_type), intent(out), optional :: status ! Exit status.

! Verify requirements - none.

B.2. REAL CLASS CODE LISTING

R

Initialize to flag value.
= initialize_real_flag

No errors for initialization possible for scalars.

if (PRESENT(status)) status = ’Success’

Verify guarantees - none.

return

end

subroutine Initialize_Real_0

define ([REPLICATE_ROUTINE], [
subroutine Initialize_Real_$1 (R REP_ARGS([dim[]i]), status)

! Use association information.
use Caesar_Flags_Module, only: initialize_real_flag

! Input variables.

REP_DECLARE([type(integer), intent(in)], [dim[]i]) ! Array dimensions.

! Input/Output variable.

type(real,$1) :: R ! Variable to be initialized.

! Output variable.

type(Status_type), intent(out), optional :: status ! Exit status.
! Internal variable.

type(integer) :: allocate_status ! Allocation Status.

! Verify requirements.

! The association status of a unallocated pointer is officially
! undefined according to the Fortran standard. With most compilers,
! the status is unassociated.
ifelse (COMPILER, NAGWare,
o, .
VERIFY(.not.ASSOCIATED(R), 0) ! R starts out unassociated.
D

! Allocation (for arrays only).
REP_ALLOCATE([R], [dim[]i], [allocate_status])

! Initialize to flag value.

233

234 APPENDIX B. INTRINSICS MODULE CODE LISTING

R = initialize_real_flag
! Verify guarantees and/or set status flag.

if (PRESENT(status)) then
WARN_IF(allocate_status /= 0, 3) ! Allocation error check.
WARN_IF(.not.ASSOCIATED(R),3) ! R is now associated.
if (allocate_status == 0 .and. ASSOCIATED(R)) then
status = ’Success’
else
status = ’Memory Error’
end if
else
VERIFY(allocate_status == 0, 0) ! Allocation error check.
VERIFY (ASSOCIATED (R),0) ! R is now associated.
end if

return
end subroutine Initialize_Real_$1

D

REPLICATE_ARRAYS

B.2.2 Finalize_Real Procedure

The main documentation of the Finalize Real Procedure in § 7.2.2 on page 44 contains additional explanation

of this code listing.

subroutine Finalize_Real_O (R, status)
! Use association information.
use Caesar_Flags_Module, only: finalize_real_flag
! Input/Output variable.
type(real), intent(inout) :: R ! Variable to be finalized.

! Qutput variable.

type(Status_type), intent(out), optional :: status ! Exit status.

! Verify requirements - none.
! Finalization.
R = finalize_real_flag

! No errors for finalization possible for scalars.

B.2. REAL CLASS CODE LISTING 235

if (PRESENT(status)) status = ’Success’
! Verify guarantees - none.

return
end subroutine Finalize_Real_0

define ([REPLICATE_ROUTINE], [
subroutine Finalize_Real_$1 (R, status)

! Input/Output variable.

type(real,$1) :: R ! Variable to be finalized.

! Output variable.

type(Status_type), intent(out), optional :: status ! Exit status.
! Internal variable.

type(integer) :: deallocate_status ! Deallocation Status.

! Verify requirements.

VERIFY (ASSOCIATED(R),0) ! R should be associated.
! Deallocation.

DEALLOCATE(R, stat=deallocate_status)

! Finalization and nullification.

NULLIFY (R)

! Verify guarantees and/or set status flag.

if (PRESENT(status)) then
WARN_IF(deallocate_status /= 0, 3) ! Deallocation error check.

WARN_IF(ASSOCIATED(R),3) ! R is now unassociated.
if (deallocate_status == 0 .and. .not.ASSOCIATED(R)) then
status = ’Success’
else
status = ’Memory Error’
end if
else
VERIFY(deallocate_status == 0, 0) ! Deallocation error check.
VERIFY(.not.ASSOCIATED(R), 0) ! R is now unassociated.
end if
return

end subroutine Finalize_Real_$1

D

236 APPENDIX B. INTRINSICS MODULE CODE LISTING

REPLICATE_ARRAYS

B.2.3 Valid_State_Real Procedure

The main documentation of the Valid_State_Real Procedure in § 7.2.3 on page 44 contains additional expla-
nation of this code listing.

! Turn off checking which involves division by zero for some compilers
! that allow error trapping.

! For Suns, you could either
! - not set DIVISION_BY_ZERO and use no compiler flags, or
! - set DIVISION_BY_ZERO and use -ftrap=Jnone.
! For Intel/NAGWare, you could either
! - not set DIVISION_BY_ZERO and use no compiler flags, or
! - set DIVISION_BY_ZERO and use -ieee=full.
ifelse(
ARCHITECTURE, Sun,
1,
ARCHITECTURE, SGI,
[define ([DIVISION_BY_ZERO],1)],
ARCHITECTURE, Intel, [

ifelse(
COMPILER, NAGWare,
0,
[define ([DIVISION_BY_ZER0],1)]
)1,

ARCHITECTURE, Apple,
[define ([DIVISION_BY_ZER0],1)]
)

define ([REPLICATE_ROUTINE], [

ifelse(POINTER_TOGGLE, [TRUE], [
pushdef ([TYPE], [real,$1])
pushdef ([Valid_State_Real P_DIM], expand(Valid_State_Real_P_$1))
pushdef ([POINTER_ONLY], [])

1,.L
pushdef ([TYPE], [real,$1,npl)
pushdef ([Valid_State_Real P_DIM], expand(Valid_State_Real NP_$1))
pushdef ([POINTER_ONLY], [!])

D

function Valid_State_Real_P_DIM (R) result(Valid)
! Use association information.

SCALAR_ONLY use Caesar_Flags_Module, only: finalize_real_flag
SCALAR_ONLY use Caesar_Logical_Class, only: ALL

! Input variable.

B.2. REAL CLASS CODE LISTING 237

type(TYPE) :: R ! Variable to be checked.
! Output variable.

type(logical) :: Valid ! Logical state.

! Internal variables.

type(real) :: one, ten, zero ! Numbers are not parameterized
! to fool smart compilers.

! Set numbers carefully (so that the compiler
! doesn’t know that zero=0).

ten = 1.d1
one = 1.d0
Zero = one - one

! Start out true.
Valid = .true.
! First, make sure that the variable has been allocated.

POINTER_ONLY ARRAY_ONLY Valid = Valid .and. ASSOCIATED(R)
POINTER_ONLY ARRAY_ONLY if (.not.Valid) return

! Make sure the variable has not been finalized.

SCALAR_ONLY Valid = Valid .and. R /= finalize_real_flag

! Check for Infs. This check determines whether R(1-e) = R, where e
is a small number. This should only be true if R = 0 or if R is

! not a valid number.

1
!
!
!
! Pass Table:
1
1
1
1
1

Intel Intel Intel Apple Sun SGI IBM
Lahey Absoft NAGWare Absoft
Infinity Fail Fail Fail Fail Fail Fail Fail
-Infinity Fail Fail Fail Fail Fail Fail Fail
NaN Pass Pass Pass Pass Pass Pass Pass

Valid = Valid .and. ALL(R == zero .or. R*(one - ten*EPSILON(one)) /= R)
TESTWRITE (6,100) ’Test 1, R(1-e) = R ==>) &
IF_UNIT_TEST ALL(R == zero .or. R*(one - ten*EPSILON(one)) /= R)

! For IEEE-conforming reals, the following is (supposedly) a check
! for NaNs. So far, it works on everything but SGIs.

!

! Pass Table (test 2):

! Intel Intel Intel Apple Sun SGI IBM

! Lahey Absoft NAGWare Absoft

238 APPENDIX B. INTRINSICS MODULE CODE LISTING

Infinity Pass Pass Pass Pass Pass Pass Pass
-Infinity Pass Pass Pass Pass Pass Pass Pass
NaN Pass Fail Fail Fail Fail Pass Fail

! NaN behavior details:

!
!

!

!

!

!

! Intel/Lahey (pre-L6.20c), Intel/Absoft, Intel/NAGWare
! (with -ieee=full), Apple/Absoft and Sun (with -ftrap=Ynone):
! Fail on tests 2 and 2a, but pass on 2b, for scalars.
! Fail on test 2, but pass on 2a and 2b, for arrays.
! Intel/Lahey:

! With the L6.20c compiler, the behavior is:

! Fail on test2a, but pass on 2 and 2b, for scalars.
! Passes on tests 2, 2a and 2b, for arrays.

! In other words, since test 2 passes for both scalars and arrays,

! this is not a good test for the Lahey compiler.

! Sun:

! Changed behavior after the 107356-02 patch; the new behavior

! is reflected here. So, with the Sun 5.0 compiler with 107377-02

! and 107356-02 patches, and the -ftrap=Jinone flag set to disable

! exception trapping, this now works as a check for Nals.

! IBM:

! Fails on tests 2 and 2a, but passes on 2b. (Recheck behavior with
! arrays to see if it is the same as some other compilers above if
! IBM access is regained.)

Valid = Valid .and. ALL(R == R)

TESTWRITE (6,100) ’Test 2, R == R ==>’_, ALL(R == R)
TESTWRITE (6,100) ’Test 2a, .not.(R /= R) ==>’, .not. ALL((R /= R))
TESTWRITE (6,100) ’Test 2b, .not.(R < R) ==>’, .not. ALL((R < R))

Create an infinity and check to verify inequality.

!
!

! Pass Table:

! Intel Intel Intel Apple Sun SGI IBM
! Lahey Absoft NAGWare Absoft

! Infinity Fail Fail Fail Fail Fail Fail Fail
! -Infinity Pass Pass Pass Pass Pass Pass Pass
! NaN Pass Pass Pass Pass Pass Pass Pass

ifdef ([DIVISION_BY_ZERO], [

Valid = Valid .and. ALL(one/zero /= R)

TESTWRITE (6,100) ’Test 3, Infinity /= R ==>’, ALL(one/zero /= R)
iD)

Create a negative infinity and check to verify inequality.

!
!

! Pass Table:

! Intel Intel Intel Apple Sun SGI IBM
! Lahey Absoft NAGWare Absoft

! Infinity Pass Pass Pass Pass Pass Pass Pass
! -Infinity Fail Fail Fail Fail Fail Fail Fail
!

NaN Pass Pass Pass Pass Pass Pass Pass

B.2. REAL CLASS CODE LISTING

ifdef ([DIVISION_BY_ZERO], [

Valid = Valid .and. ALL(-one/zero /= R)
TESTWRITE (6,100) ’Test 4, -Infinity /= R ==>’, ALL(-one/zero /= R)

D

Pass Table:
Intel Intel
Lahey Absoft
Infinity Pass Pass
-Infinity Pass Pass
NaN Pass Pass

ifdef ([DIVISION_BY_ZERO], [

Intel
NAGWare
Pass
Pass
Pass

Apple
Absoft

Pass
Pass
Pass

Valid = Valid .and. ALL(zero/zero /= R)
TESTWRITE (6,100) ’Test 5, NaN /= R

D

Check the top of the range.

!
!
! Pass Table:

! Intel Intel
! Lahey Absoft
! Infinity Fail Fail
! -Infinity Pass Pass
! NaN Fail Fail

Valid = Valid .and. ALL(R <= HUGE(R))

Intel

NAGWare

Fail
Pass
Fail

Apple
Absoft
Fail
Pass
Fail

TESTWRITE (6,100) ’'Test 6, R <= HUGE(R)

Create a NaN and check to verify inequality.

Sun

Pass
Pass
Pass

Fail
Pass
Fail

SGI

Pass
Pass
Pass

This test doesn’t seem to work, but it is retained in
on some machine in the future.

SGI

Fail
Pass
Fail

==>’, ALL(R <=

IBM
Pass
Pass

Pass

case it works

==>’, ALL(zero/zero /= R)

IBM
Fail

Pass
Fail

HUGE(R))

! Note that there is no explicit check for the bottom of the
! range, since there is no F90 intrinsic that returns the lowest
! negative number that a real can take.

! Format statement.

IF_UNIT_TEST 100 format (2x, a, 1x, 11)

return

end function Valid_State_Real_P_DIM

popdef ([TYPE])

popdef ([Valid_State_Real _P_DIM])

popdef ([POINTER_ONLY])
D

define ([POINTER_TOGGLE], [TRUE])

REPLICATE

define ([POINTER_TOGGLE], [FALSE])

239

240 APPENDIX B. INTRINSICS MODULE CODE LISTING

REPLICATE

B.2.4 MaxVal_Real_Scalar Procedure

The main documentation of the MaxVal Real Scalar Procedure in § 7.2.4 on page 45 contains additional
explanation of this code listing.

function MaxVal_Real_Scalar (R)
! Input variable.
type(real), intent(in) :: R
! Output variable.

type(real) :: MaxVal_Real_Scalar

! MaxVal_Real_Scalar is equal to R.
MaxVal_Real_Scalar = R

return
end function MaxVal_Real_Scalar

B.2.5 MinVal Real _Scalar Procedure

The main documentation of the MinVal Real Scalar Procedure in § 7.2.5 on page 45 contains additional
explanation of this code listing.

function MinVal_Real_Scalar (R)
! Input variable.
type(real), intent(in) :: R
! OQutput variable.

type(real) :: MinVal_Real_Scalar

! MinVal_Real_Scalar is equal to R.
MinVal_Real_Scalar = R

return

B.2. REAL CLASS CODE LISTING 241

end function MinVal_Real_Scalar

B.2.6 SUM_Real_Scalar Procedure

The main documentation of the SUM_Real Scalar Procedure in § 7.2.6 on page 45 contains additional
explanation of this code listing.

function SUM_Real_Scalar (R)

! Input variable.

type(real), intent(in) :: R

! OQutput variable.

type(real) :: SUM_Real_Scalar
! SUM_Real_Scalar is equal to R.
SUM_Real_Scalar = R

return
end function SUM_Real_Scalar

B.2.7 VeryClose Real Procedure

The main documentation of the VeryClose_Real Procedure in § 7.2.7 on page 46 contains additional expla-
nation of this code listing.

define ([VERY_CLOSE_ROUTINE], [
pushdef ([DIM], [$1])
pushdef ([VeryClose_Real _DIM], expand(VeryClose_Real_DIM))

function VeryClose_Real DIM (X, Y) result(VeryClose)
! Use association for numbers.
use Caesar_Numbers_Module, only: two, ten
! Input variables.
type(real,DIM,np), intent(in) :: X, Y ! Variables to be checked.

! Dutput variable.

type(logical) :: VeryClose ! Result of check.

242 APPENDIX B. INTRINSICS MODULE CODE LISTING

! Verify requirements.

VERIFY (ALL (SHAPE(X)==SHAPE(Y)),5) ! X and Y are conformable.

! VeryClose is true if X and Y are within 10 SPACING’s of each other.
VeryClose = ALL(ABS(X - Y) < ten*SPACING((X+Y)/two))

! Verify guarantees -- none.

return
end function VeryClose_Real_DIM

popdef ([DIM])
popdef ([VeryClose_Real _DIM])
D

forloop([Dim], [0],[7],[
VERY_CLOSE_ROUTINE (Dim)
D

B.2.8 Real Class Unit Test Program

This lightly commented program performs a unit test on the Real Class, which is described in § 7.2 on page
43.

module Unit_Test_Module
use Caesar_Real_Class
implicit none

contains

subroutine testreal (R)
type(real) :: R
type(logical) :: vs
write (6,100) 'R = ’, R
vs = Valid_State(R)
write (6,101) ’Valid_State(R) => 7, vs
100 format (/, a, 1lpel5.6)
101 format (2x, a, 11)
return
end subroutine testreal

subroutine testreal3 (R3)
type(real,3) :: R3
type(logical) :: vs

write (6,100) ’R3(1,1,1) = ’, R3(1,1,1)
vs = Valid_State(R3)
write (6,101) ’Valid_State(R3) => ", ys

100 format (/, a, 1lpel5.6)

B.2. REAL CLASS CODE LISTING 243

101 format (2x, a, 11)
return
end subroutine testreal3

end module Unit_Test_Module

program Unit_Test
use Unit_Test_Module
use Caesar_Real_Class
implicit none

type(real) :: R, R2
type(real,3) :: R3
type(real) :: one, zero

! Initializations.

call Initialize (R)
call Initialize (R2)
call Initialize (R3, 3, 4, 5)

! Parameters are not used here
! to fool smart compilers.

one = 1.d0
Zero = one — one

! Real tests.

ifdef ([DIVISION_BY_ZERO], [
R = one/zero

call testreal
R = -one/zero
call testreal
R = zero/zero
call testreal

(R)
(R)

(R)

D

R = zero

call testreal (R)
R = one

call testreal (R)
R = HUGE(one)
call testreal (R)
R = -HUGE(one)
call testreal (R)

! Real multi-dimensional tests.

R3 = omne

ifdef ([DIVISION_BY_ZERO], [
R3(1,1,1) = one/zero
call testreal3 (R3)
R3(1,1,1) = -one/zero
call testreal3 (R3)

244

R3(1,1,1) = zero/zero
call testreal3 (R3)

D

R3(1,1,1) = zero
call testreal3 (R3)
R3(1,1,1) = one
call testreal3 (R3)

R3(1,1,1) = HUGE(one)

call testreal3 (R3)

R3(1,1,1) = -HUGE(one)

call testreal3 (R3)

! Real scalar function tests.

write (6,%)

APPENDIX B. INTRINSICS MODULE CODE LISTING

write (6,*) ’Real scalar function tests:’

R = 1.23456789d0

write (6,*) ’MaxVal(R) =

write (6,*) ’MinVal(R)

write (6,*) ’SUM(R)

R2 = (((R + 1.40) * 47.

if (.not. VeryClose(R,

write (6,%) > R
write (6,%) ’ R2
end if

! Finalizations.
call Finalize (R)
call Finalize (R2)

call Finalize (R3)

end

)

)

’ . MaxVal(R)
> . MinVal(R)
>, SUM(R)

d0) - 47.d0) / 47.d40
R2)) then
write (6,*) ’VeryClose Error: ’

H

H

R
R2

B.3 Integer Class Code Listing

The main documentation of the Integer Class in § 7.3 on page 46 contains additional explanation of this

code listing.

Author: Michael L. Hall

P.0. Box 1663, MS-D413, LANL

ph: 505-665-4312
email: Hall@LANL.gov

!
!
!
! Los Alamos, NM 87545
1
1
1

! Created on: 1/18/99

! CVS Info: $Id: integer.F90,v 7.2 2006/10/12 18:30:29 hall Exp $

module Caesar_Integer_Class

B.3. INTEGER CLASS CODE LISTING 245

! Global use associations.
use Caesar_Status_Class
! Start up with everything untyped and private.

implicit none
private

! Public procedures.

public :: Initialize, Finalize, Valid_State, Valid_State_NP
public :: MaxVal, MinVal, SUM

REPLICATE_INTERFACE([Initialize], [Initialize_Integer])
REPLICATE_INTERFACE([Finalize], [Finalize_Integer])

REPLICATE_INTERFACE([Valid_State], [Valid_State_Integer_P])
REPLICATE_INTERFACE([Valid_State_NP], [Valid_State_Integer_NP])

interface MaxVal
module procedure MaxVal_Integer_Scalar
end interface

interface MinVal
module procedure MinVal_Integer_Scalar
end interface

interface SUM
module procedure SUM_Integer_Scalar
end interface

contains

The Integer_Class contains the following routines which are listed in separate sections:

Initialize Integer (§ B.3.1, page 245)
Finalize Integer (§ B.3.2, page 247)
Valid_State_Integer (§ B.3.3, page 249)
MaxVal Integer_Scalar (§ B.3.4, page 250)
MinVal Integer_Scalar (§ B.3.5, page 251)
SUM Integer_Scalar (§ B.3.6, page 251)

end module Caesar Integer_Class

B.3.1 [Initialize Integer Procedure

The main documentation of the Initialize Integer Procedure in § 7.3.1 on page 46 contains additional expla-
nation of this code listing.

246 APPENDIX B. INTRINSICS MODULE CODE LISTING

subroutine Initialize_Integer_0 (I, status)
! Use association information.
use Caesar_Flags_Module, only: initialize_integer_flag
! OQutput variables.

type(integer), intent(out) :: I ! Variable to be initialized.
type(Status_type), intent(out), optional :: status ! Exit status.

! Verify requirements - none.

! Initialize to flag value.

I = initialize_integer_flag

! No errors for initialization possible for scalars.
if (PRESENT(status)) status = ’Success’

! Verify guarantees - none.

return
end subroutine Initialize_Integer_O

define ([REPLICATE_ROUTINE], [
subroutine Initialize_Integer_$1 (I REP_ARGS([dim[]i]), status)

! Use association information.

use Caesar_Flags_Module, only: initialize_integer_flag

! Input variables.

REP_DECLARE([type(integer), intent(in)], [dim[]i]) ! Array dimensions.
! Input/Output variable.

type(integer,$1) :: I ! Variable to be initialized.

! Output variable.

type(Status_type), intent(out), optional :: status ! Exit status.

! Internal variable.

type(integer) :: allocate_status ! Allocation Status.

B.3. INTEGER CLASS CODE LISTING 247

! Verify requirements.

! The association status of a unallocated pointer is officially

! undefined according to the Fortran standard. With most compilers,
! the status is unassociated.

ifelse (COMPILER, NAGWare,

0, t
VERIFY(.not.ASSOCIATED(I), 0) ! T starts out unassociated.

D

! Allocation (for arrays only).
REP_ALLOCATE([I], [dim[]i], [allocate_status])
! Initialize to flag value.

I = initialize_integer_flag

! Verify guarantees and/or set status flag.

if (PRESENT(status)) then
WARN_IF(allocate_status /= 0, 3) ! Allocation error check.
WARN_IF(.not.ASSOCIATED(I),3) ! T is now associated.
if (allocate_status == 0 .and. ASSOCIATED(I)) then
status = ’Success’
else
status = ’Memory Error’
end if
else
VERIFY(allocate_status == 0, 0) ! Allocation error check.
VERIFY (ASSOCIATED(I),O0) ! T is now associated.
end if

return
end subroutine Initialize_Integer_$1

D

REPLICATE_ARRAYS

B.3.2 Finalize_Integer Procedure

The main documentation of the Finalize Integer Procedure in § 7.3.2 on page 47 contains additional expla-
nation of this code listing.

subroutine Finalize_Integer_0 (I, status)
! Use association information.
use Caesar_Flags_Module, only: finalize_integer_flag

! Input/Output variable.

248 APPENDIX B. INTRINSICS MODULE CODE LISTING

type(integer), intent(inout) :: I ! Variable to be finalized.

! OQutput variable.

type(Status_type), intent(out), optional :: status ! Exit status.

! Verify requirements - none.

! Finalization.

I = finalize_integer_flag

! No errors for finalization possible for scalars.
if (PRESENT(status)) status = ’Success’

! Verify guarantees - none.

return
end subroutine Finalize_Integer_O

define ([REPLICATE_ROUTINE], [
subroutine Finalize_Integer_$1 (I, status)

! Input/Output variable.

type(integer,$1) :: I ! Variable to be finalized.

! Output variable.

type(Status_type), intent(out), optional :: status ! Exit status.
! Internal variable.

type(integer) :: deallocate_status ! Deallocation Status.

! Verify requirements.

VERIFY (ASSOCIATED(I),0) ! T should be associated.
! Deallocation.

DEALLOCATE(I, stat=deallocate_status)

! Finalization and nullification.

NULLIFY(I)

! Verify guarantees and/or set status flag.

B.3. INTEGER CLASS CODE LISTING 249

if (PRESENT(status)) then
WARN_IF(deallocate_status /= 0, 3) ! Deallocation error check.
WARN_IF(ASSOCIATED(I),3) ! T is now unassociated.

if (deallocate_status == 0 .and. .not.ASSOCIATED(I)) then
status = ’Success’
else
status = ’Memory Error’
end if
else

VERIFY(deallocate_status == 0, 0) ! Deallocation error check.
VERIFY(.not.ASSOCIATED(I), 0) ! T is now unassociated.
end if

return
end subroutine Finalize_Integer_$1

D

REPLICATE_ARRAYS

B.3.3 Valid_State_Integer Procedure

The main documentation of the Valid_State Integer Procedure in § 7.3.3 on page 48 contains additional
explanation of this code listing.

define ([REPLICATE_ROUTINE], [
ifelse(POINTER_TOGGLE, [TRUE], [
pushdef ([TYPE], [integer,$1])
pushdef ([Valid_State_Integer_P_DIM], expand(Valid_State_Integer_P_$1))
pushdef ([POINTER_ONLY], [1)
1.L
pushdef ([TYPE], [integer,$1,np])

pushdef ([Valid_State_Integer_P_DIM], expand(Valid_State_Integer_NP_$1))
pushdef ([POINTER_ONLY], [!])
D

function Valid_State_Integer_P_DIM (I) result(Valid)
! Use association information.

SCALAR_ONLY use Caesar_Flags_Module, only: finalize_integer_flag
SCALAR_ONLY use Caesar_Logical_Class, only: ALL

! Input variable.
type(TYPE) :: I ! Variable to be checked.
! Output variable.

type(logical) :: Valid ! Logical state.

250 APPENDIX B. INTRINSICS MODULE CODE LISTING
! Start out true.
Valid = .true.
! First, make sure that the variable has been allocated.

POINTER_ONLY ARRAY_ONLY Valid = Valid .and. ASSOCIATED(I)
POINTER_ONLY ARRAY_ONLY if (.not.Valid) return

! Make sure the variable has not been finalized.

SCALAR_ONLY Valid = Valid .and. I /= finalize_integer_flag

! Check the top of the range.
Valid = Valid .and. ALL(I <= HUGE(I))

! Note that there is no explicit check for the bottom of the

! range, since there is no F90 intrinsic that returns the lowest

! negative number that an integer can take.

return
end function Valid_State_Integer_P_DIM

popdef ([TYPE])
popdef ([Valid_State_Integer_P_DIM])
popdef ([POINTER_ONLY])

D

define ([POINTER_TOGGLE], [TRUE])
REPLICATE

define ([POINTER_TOGGLE], [FALSE])
REPLICATE

B.3.4 MaxVal Integer_Scalar Procedure

The main documentation of the MaxVal Integer_Scalar Procedure in § 7.3.4 on page 48 contains additional
explanation of this code listing.

function MaxVal_Integer_Scalar (I)
! Input variable.
type(integer), intent(in) :: I
! OQutput variable.

type(integer) :: MaxVal_Integer_Scalar

B.3. INTEGER CLASS CODE LISTING 251

! MaxVal_Integer_Scalar is equal to I.
MaxVal_Integer_Scalar = I

return
end function MaxVal_Integer_Scalar

B.3.5 MinVal Integer_Scalar Procedure

The main documentation of the MinVal Integer_Scalar Procedure in § 7.3.5 on page 48 contains additional
explanation of this code listing.

function MinVal_Integer_Scalar (I)

! Input variable.

type(integer), intent(in) :: I

! OQutput variable.

type(integer) :: MinVal_Integer_Scalar
! MinVal_Integer_Scalar is equal to I.
MinVal_Integer_Scalar = I

return
end function MinVal_Integer_Scalar

B.3.6 SUM _Integer_Scalar Procedure

The main documentation of the SUM _Integer_Scalar Procedure in § 7.3.6 on page 49 contains additional
explanation of this code listing.

function SUM_Integer_Scalar (I)
! Input variable.
type(integer), intent(in) :: I
! OQutput variable.
type(integer) :: SUM_Integer_Scalar

! SUM_Integer_Scalar is equal to I.

252 APPENDIX B. INTRINSICS MODULE CODE LISTING

SUM_Integer_Scalar = I

return
end function SUM_Integer_Scalar

B.3.7 Integer Class Unit Test Program

This lightly commented program performs a unit test on the Integer Class, which is described in § 7.3 on
page 46.

module Unit_Test_Module
use Caesar_Integer_Class
implicit none

contains
subroutine testint (I)

type(integer) :: I
type(logical) :: vs

write (6,100) ’I =, I
vs = Valid_State(I)
write (6,101) ’Valid_State(I) ==> 7, vs

100 format (/, a, i14)
101 format (2x, a, 11)
return

end subroutine testint

subroutine testint3 (I3)
type(integer), pointer, dimension(:,:,:) :: I3
type(logical) :: vs
write (6,100) ’I3(1,1,1) = », I3(1,1,1)
vs = Valid_State(I3)
write (6,101) ’Valid_State(I3) ==> ", vs
100 format (/, a, il4)
101 format (2x, a, 11)
return
end subroutine testint3

end module Unit_Test_Module
program Unit_Test

use Unit_Test_Module

use Caesar_Integer_Class

implicit none

type(integer) :: I
type(integer,3) :: I3

! Initializations.

call Initialize (I)

B.3. INTEGER CLASS CODE LISTING 253

call Initialize (I3, 3, 4, 5)
! Integer tests.

I=0

call testint (I)
I = HUGE(I)

call testint (I)
I = -HUGE(I)
call testint (I)

I3(1,1,1) =0

call testint3 (I3)
I3(1,1,1) = HUGE(I3)
call testint3 (I3)
I3(1,1,1) = -HUGE(I3)
call testint3 (I3)

! Note that the compiler figures out the error unless it is given in
! two steps, as follows. Also, note that adding 1 to HUGE wraps to
! a low negative number, as does subtracting 2 from -HUGE.

I = HUGE(I)
I=1I+1

call testint (I)
I = -HUGE(I)
I=1I-2

call testint (I)

I13(1,1,1) = HUGE(I3)
I3(1,1,1) = 13(1,1,1)+1
call testint3 (I3)
I3(1,1,1) = -HUGE(I3)
13(1,1,1) = 13(1,1,1)-2

call testint3 (I3)

! The bottom line is that there are really no invalid integers. The
! Valid_State_Integer routine is primarily added for completeness.

! Integer scalar function tests.

I = 123456789

write (6,*) ’MaxVal(I) = ’, MaxVal(I)
write (6,*) ’MinVal(I) ?, MinVal(I)
write (6,%) ’SUM(I) ’, SUM(TI)

! Finalizations.

call Finalize (I)
call Finalize (I3)

end

254 APPENDIX B. INTRINSICS MODULE CODE LISTING

B.4 Logical Class Code Listing

The main documentation of the Logical Class in § 7.4 on page 49 contains additional explanation of this
code listing.

1
! Author: Michael L. Hall

! P.0. Box 1663, MS-D413, LANL
! Los Alamos, NM 87545

! ph: 505-665-4312

! email: Hall@LANL.gov

1

! Created on: 1/11/99
! CVS Info: $Id: logical.F90,v 7.8 2006/10/12 18:30:29 hall Exp $

module Caesar_Logical_Class
! Global use associations.
use Caesar_Status_Class
! Start up with everything untyped and private.

implicit none
private

! Public procedures.

public :: Initialize, Finalize, Valid_State, Valid_State_NP
public :: ALL, ANY, COUNT, Operator(.InInterval.), Operator(.InSet.), &
Operator (.NotInInterval.), Operator(.NotInSet.)

REPLICATE_INTERFACE([Initialize], [Initialize_Logicall])
REPLICATE_INTERFACE([Finalize], [Finalize_Logicall)

REPLICATE_INTERFACE([Valid_State], [Valid_State_Logical_P])
REPLICATE_INTERFACE([Valid_State_NP], [Valid_State_Logical_NP])

interface ALL
module procedure ALL_Scalar
end interface

interface ANY
module procedure ANY_Scalar
end interface

interface COUNT
module procedure COUNT_Scalar
end interface

define ([OPERATOR_INTERFACE], [
pushdef ([PROCEDURE], [$1])
pushdef ([TYPE], [$2])

B.4. LOGICAL CLASS CODE LISTING 255

pushdef ([DIM], [$31)
pushdef ([PROCEDURE_TYPE_DIM], expand(PROCEDURE_TYPE_DIM))

interface OPERATOR (.PROCEDURE.)
module procedure PROCEDURE_TYPE_DIM
end interface

popdef ([PROCEDURE])

popdef ([TYPE])

popdef ([DIM])

popdef ([PROCEDURE_TYPE_DIM])
D

forloop([Dim], [0],[7],[
fortext ([Typel, [Real Integer],[
fortext ([Proc], [InInterval NotInInterval], [
OPERATOR_INTERFACE (Proc, Type, Dim)
D
D)
D

define ([OPERATOR_INTERFACE], [
pushdef ([PROCEDURE], [$1])
pushdef ([TYPE], [$2])
pushdef ([PROCEDURE_TYPE], expand(PROCEDURE_TYPE))

interface OPERATOR (.PROCEDURE.)
module procedure PROCEDURE_TYPE
end interface

popdef ([PROCEDURE])

popdef ([TYPE])

popdef([PRUCEDURE_TYPE])
D

fortext ([Typel, [Real Integer Character], [
fortext ([Proc], [InSet NotInSet], [
OPERATOR_INTERFACE (Proc, Type)
D
D

contains

The Logical _Class contains the following routines which are listed in separate sections:

Initialize Logical (§ B.4.1, page 256)
Finalize Logical (§ B.4.2, page 258)
Valid_State_Logical (§ B.4.3, page 259)
ALL_Scalar (§ B.4.4, page 260)

ANY Scalar (§ B.4.5, page 261)
COUNT_Scalar (§ B.4.6, page 261)

256 APPENDIX B. INTRINSICS MODULE CODE LISTING

InInterval (§ B.4.7, page 262)
InSet (§ B.4.8, page 263)
NotInInterval (§ B.4.9, page 264)
NotInSet (§ B.4.10, page 265)

end module Caesar_Logical Class

B.4.1 Initialize_Logical Procedure

The main documentation of the Initialize Logical Procedure in § 7.4.1 on page 49 contains additional expla-
nation of this code listing.

subroutine Initialize_Logical_0 (L, status)
! Use association information.
use Caesar_Flags_Module, only: initialize_logical_flag
! OQutput variables.

type(logical), intent(out) :: L ! Variable to be initialized.
type(Status_type), intent(out), optional :: status ! Exit status.

! Verify requirements - none.

! Initialize.

L = initialize_logical_flag

! No errors for initialization possible for scalars.
if (PRESENT(status)) status = ’Success’

! Verify guarantees - none.

return
end subroutine Initialize_Logical_0

define ([REPLICATE_ROUTINE], [
subroutine Initialize_Logical_$1 (L REP_ARGS([dim[]il), status)

! Use association information.
use Caesar_Flags_Module, only: initialize_logical_flag
! Input variables.

REP_DECLARE([type(integer), intent(in)], [dim[]i]) ! Array dimensions.

B.4. LOGICAL CLASS CODE LISTING 257

! Input/Output variable.

type(logical,$1) :: L ! Variable to be initialized.

! Output variable.

type(Status_type), intent(out), optional :: status ! Exit status.
! Internal variable.

type(integer) :: allocate_status ! Allocation Status.

! Verify requirements.

! The association status of a unallocated pointer is officially
! undefined according to the Fortran standard. With most compilers,
! the status is unassociated.
ifelse (COMPILER, NAGWare,
a1, [

VERIFY(.not.ASSOCIATED(L), 0) ! I, starts out unassociated.
D
! Allocation (for arrays onmnly).
REP_ALLOCATE([L], [dim[]il, [allocate_status])
! Initialize.
L = initialize_logical_flag

! Verify guarantees and/or set status flag.

if (PRESENT(status)) then
WARN_IF(allocate_status /= 0, 3) ! Allocation error check.

WARN_IF(.not.ASSOCIATED(L),3) ! L is now associated.
if (allocate_status == 0 .and. ASSOCIATED(L)) then
status = ’Success’
else
status = ’Memory Error’
end if
else
VERIFY(allocate_status == 0, 0) ! Allocation error check.
VERIFY (ASSOCIATED(L),0) ! L is now associated.
end if
return

end subroutine Initialize_Logical_$1

D

REPLICATE_ARRAYS

258 APPENDIX B. INTRINSICS MODULE CODE LISTING

B.4.2 Finalize Logical Procedure

The main documentation of the Finalize Logical Procedure in § 7.4.2 on page 50 contains additional expla-
nation of this code listing.

subroutine Finalize_Logical_0 (L, status)
! Use association information.
use Caesar_Flags_Module, only: finalize_logical_flag
! Input/Output variable.
type(logical), intent(inout) :: L ! Variable to be finalized.

! OQutput variable.

type(Status_type), intent(out), optional :: status ! Exit status.

! Verify requirements - none.

! Finalization.

L = finalize_logical_flag

! No errors for finalization possible for scalars.
if (PRESENT(status)) status = ’Success’

! Verify guarantees - none.

return
end subroutine Finalize_Logical_O

define ([REPLICATE_ROUTINE], [
subroutine Finalize_Logical_$1 (L, status)

! Input/Output variable.

type(logical,$1) :: L ! Variable to be finalized.

! Output variable.
type(Status_type), intent(out), optional :: status ! Exit status.
! Internal variable.

type(integer) :: deallocate_status ! Deallocation Status.

B.4. LOGICAL CLASS CODE LISTING 259

! Verify requirements.
VERIFY (ASSOCIATED(L),0) ! L should be associated.
! Deallocation.
DEALLOCATE(L, stat=deallocate_status)
! Finalization and nullification.
NULLIFY (L)
! Verify guarantees and/or set status flag.

if (PRESENT(status)) then
WARN_IF(deallocate_status /= 0, 3) ! Deallocation error check.
WARN_IF(ASSOCIATED(L),3) ! L. is now unassociated.
if (deallocate_status == 0 .and. .not.ASSOCIATED(L)) then
status = ’Success’
else
status = ’Memory Error’
end if
else
VERIFY(deallocate_status == 0, 0) ! Deallocation error check.
VERIFY(.not.ASSOCIATED(L), 0) ! L is now unassociated.
end if

return
end subroutine Finalize_Logical_$1

D

REPLICATE_ARRAYS

B.4.3 Valid_State_Logical Procedure

The main documentation of the Valid _State _Logical Procedure in § 7.4.3 on page 51 contains additional
explanation of this code listing.

define ([REPLICATE_ROUTINE], [

ifelse(POINTER_TOGGLE, [TRUE], [
pushdef ([TYPE], [logical,$1])
pushdef ([Valid_State_Logical _P_DIM], expand(Valid_State_Logical_P_$1))
pushdef ([POINTER_ONLY], [1)

1,L
pushdef ([TYPE], [logical,$1,npl)
pushdef ([Valid_State_Logical _P_DIM], expand(Valid_State_Logical _NP_$1))
pushdef ([POINTER_ONLY], [!])

D

function Valid_State_Logical_P_DIM (L) result(Valid)

! Input variable.

260 APPENDIX B. INTRINSICS MODULE CODE LISTING

type(TYPE) :: L ! Variable to be checked.
! Output variable.

type(logical) :: Valid ! Logical state.

! Start out true.
Valid = .true.
! First, make sure that the variable has been allocated.

POINTER_ONLY ARRAY_ONLY Valid = Valid .and. ASSOCIATED(L)
POINTER_ONLY ARRAY_ONLY if (.not.Valid) return

! A1l logicals should be valid, so this tautology should always work.
Valid = Valid .and. ALL(L .or. .not. L)

return
end function Valid_State_Logical_P_DIM

popdef ([TYPE])
popdef ([Valid_State_Logical_P_DIM])
popdef ([POINTER_ONLY])

D

define ([POINTER_TOGGLE], [TRUE])
REPLICATE

define ([POINTER_TOGGLE], [FALSE])
REPLICATE

B.4.4 ALL_Scalar Procedure

The main documentation of the ALL_Scalar Procedure in § 7.4.4 on page 51 contains additional explanation
of this code listing.

function ALL_Scalar (L)
! Input variable.
type(logical), intent(in) :: L
! Qutput variable.

type(logical) :: ALL_Scalar

B.4. LOGICAL CLASS CODE LISTING 261

! ALL_Scalar is true iff L is true.
ALL_Scalar = L

return
end function ALL_Scalar

B.4.5 ANY_Scalar Procedure

The main documentation of the ANY _Scalar Procedure in § 7.4.5 on page 51 contains additional explanation
of this code listing.

function ANY_Scalar (L)

! Input variable.

type(logical), intent(in) :: L

! Output variable.

type(logical) :: ANY_Scalar
! ANY_Scalar is true iff L is true.
ANY_Scalar = L

return
end function ANY_Scalar

B.4.6 COUNT_Scalar Procedure

The main documentation of the COUNT _Scalar Procedure in § 7.4.6 on page 52 contains additional expla-
nation of this code listing.

function COUNT_Scalar (L)
! Input variable.
type(logical), intent(in) :: L
! OQutput variable.

type(integer) :: COUNT_Scalar

262 APPENDIX B. INTRINSICS MODULE CODE LISTING

! COUNT_Scalar is equal to the number of trues in L,
! so it is 1 if L is true, 0 if L is false.

if (L) then
COUNT_Scalar = 1
else
COUNT_Scalar = 0
end if
return

end function COUNT_Scalar

B.4.7 InlInterval Procedure

The main documentation of the InInterval Procedure in § 7.4.7 on page 52 contains additional explanation

of this code listing.

define ([IN_INTERVAL_ROUTINE], [
pushdef ([TYPE], [$1])
pushdef ([DIM], [$2])
pushdef ([InInterval TYPE_DIM], expand(InInterval TYPE_DIM))

function InInterval_TYPE_DIM (X, Interval) result(InInterval)

! Input variables.

type (TYPE,DIM,np), intent(in) :: X ! Variable to be checked.
type(TYPE), dimension(2), intent(in) :: Interval ! Interval to check.

! Output variable.

type(logical) :: InInterval ! Result of check.

! Verify requirements.

VERIFY(Interval(1l) <= Interval(2),7) ! Interval should be well-formed.

! InInterval is true if X is in the interval.

InInterval = ALL(X >= Interval(l) .and. &
X <= Interval(2))

! Verify guarantees -- none.

return
end function InInterval_TYPE_DIM

popdef ([TYPE])
popdef ([DIM])
popdef ([InInterval _TYPE_DIM])

B.4. LOGICAL CLASS CODE LISTING 263

D

forloop([Dim], [0],[7],[
fortext([Typel, [real integer],[
IN_INTERVAL_ROUTINE(Type, Dim)
1D
D

B.4.8 InSet Procedure

The main documentation of the InSet Procedure in § 7.4.8 on page 53 contains additional explanation of
this code listing.

define ([IN_SET_ROUTINE], [

ifelse($1, [character], [

pushdef ([TYPE], [$1,*])

pushdef ([InSet_TYPE], expand(InSet_$1))
1,L

pushdef ([TYPE], [$1])

pushdef ([InSet_TYPE], expand(InSet_TYPE))
D

function InSet_TYPE (X, Set) result(InSet)
! Input variables.

type(TYPE), intent(in) :: X ! Variable to be checked.
type(TYPE), dimension(:), intent(in) :: Set ! The set to check.

! Output variable.
type(logical) :: InSet ! Result of check.
! Internal variable.

type(integer) :: element ! Element loop counter.

! Verify requirements - none.
! InSet is true if X is in the set.
InSet = .false.
do element = 1, SIZE(Set)

InSet = InSet .or. X == Set(element)
end do

! Verify guarantees -- none.

return
end function InSet_TYPE

264 APPENDIX B. INTRINSICS MODULE CODE LISTING

popdef ([TYPE])
popdef ([InSet_TYPE])
D
fortext ([Typel, [real integer character], [

IN_SET_ROUTINE(Type)
D

B.4.9 NotInInterval Procedure

The main documentation of the NotInInterval Procedure in § 7.4.9 on page 53 contains additional explanation
of this code listing.

define ([NOT_IN_INTERVAL_ROUTINE], [
pushdef ([TYPE], [$1])
pushdef ([DIMI, [$2]1)
pushdef ([NotInInterval TYPE_DIM], expand(NotInInterval TYPE_DIM))
function NotInInterval _TYPE_DIM (X, Interval) result(NotInInterval)

! Input variables.

type(TYPE,DIM,np), intent(in) :: X ! Variable to be checked.
type(TYPE), dimension(2), intent(in) :: Interval ! Interval to check.

! Output variable.

type(logical) :: NotInInterval ! Result of check.

! Verify requirements.
VERIFY(Interval(1l) <= Interval(2),7) ! Interval should be well-formed.
! NotInInterval is true if X is not in the interval.

NotInInterval = ALL(X < Interval(l) .or. &
X > Interval(2))

! Verify guarantees -- none.

return
end function NotInInterval_TYPE_DIM

popdef ([TYPE])

popdef ([DIM])

popdef ([NotInInterval TYPE_DIM])
D

forloop([Dim], [0],[7],[

B.4. LOGICAL CLASS CODE LISTING 265

fortext ([Typel, [real integer],[
NOT_IN_INTERVAL_ROUTINE(Type, Dim)
D
D

B.4.10 NotInSet Procedure

The main documentation of the NotInSet Procedure in § 7.4.10 on page 54 contains additional explanation
of this code listing.

define ([NOT_IN_SET_ROUTINE], [
ifelse($1, [character], [
pushdef ([TYPE], [$1,%])
pushdef ([NotInSet_TYPE], expand(NotInSet_$1))
1.C
pushdef ([TYPE], [$1])
pushdef ([NotInSet_TYPE], expand(NotInSet_TYPE))
1
function NotInSet _TYPE (X, Set) result(NotInSet)

! Input variables.

type(TYPE), intent(in) :: X ! Variable to be checked.
type(TYPE), dimension(:), intent(in) :: Set ! The set to check.

! Output variable.
type(logical) :: NotInSet ! Result of check.
! Internal variable.

type(integer) :: element ! Element loop counter.

! Verify requirements - none.
! NotInSet is true if X is not in the set.
NotInSet = .true.
do element = 1, SIZE(Set)

NotInSet = NotInSet .and. X /= Set(element)
end do

! Verify guarantees -- none.

return
end function NotInSet_TYPE

popdef ([TYPE])
popdef ([NotInSet_TYPE])

266 APPENDIX B. INTRINSICS MODULE CODE LISTING

D
fortext ([Typel, [real integer character], [

NOT_IN_SET_ROUTINE (Type)
D

B.4.11 Logical Class Unit Test Program

This lightly commented program performs a unit test on the Logical Class, which is described in § 7.4 on
page 49.

program Unit_Test
use Caesar_Logical_Class
implicit none

type(logical) :: L
type(logical,3) :: L3

! Initialize logicals.

call Initialize (L)
call Initialize (L3, 3, 4, 5)

! Logical Valid_State tests.

L = .false.

write (6,%) ’Valid_State L =’, Valid_State(L)

L = .true.

write (6,%) ’Valid_State L =’, Valid_State(L)
L3 = .false.

write (6,%) ’Valid_State L3 =’, Valid_State(L3)
L3 = .true.

write (6,*) ’Valid_State L3 =’, Valid_State(L3)

! Logical scalar function tests.

L = .false.

write (6,%) ’COUNT(L) =’, COUNT(L)
write (6,%) ’ALL(L) =’, ALL(L)
write (6,%) ’ANY(L) =’, ANY(L)

L = .true.

write (6,*) ’COUNT(L) =’, COUNT(L)
write (6,*) ’ALL(L) =’, ALL(L)
write (6,*) ’ANY(L) =’, ANY(L)

! Logical interval tests.

write (6,*) ’Following intervals should use brackets, ’
write (6,*) ’but they are not available in F90.’

write (6,*) ’Is 1 in (1,99)?7:’, 1 .InInterval. (/1, 99/)
write (6,*) ’Is 5 in (3,7)7?:’, 5 .InInterval. (/3, 7/)
write (6,*%) ’Is (6,3,4) in (3,7)7:7, &

B.5. CHARACTER CLASS CODE LISTING 267

write

write
write

write

write

write

write

write

write

write
write

write

write

(6,%)

(6,%)
(6,%)

(6,%)
(6,%)
(6,%)
(6,%)
(6,%)
(6,%)

(6,%)
(6,%)

(6,%)

(6,%)

(/6, 3, 4/) .InInterval. (/3, 7/)

’Is (6,3,4,8) in (3,7)7:’, &

(/6, 3, 4, 8/) .InInterval. (/3, 7/)

’Is 1.0 in (1.0,99.0)7:’, 1.d0 .InInterval. (/1.40, 99.d0/)

’Is 3.14159 in (2.3,10.4)7:’, &

3.14159d0 .InInterval. (/2.3d0, 10.440/)

’Is (3.14159,4.2,5.8) in (2.3,10.4)7:’, &

(/3.14159d40, 4.2d0, 5.8d0/) .InInterval. (/2.3d0, 10.440/)

’Is (3.14159,4.2,5.8,14.0) in (2.3,10.4)7:7, &

(/3.14159d40, 4.2d40, 5.8d0, 14.40/) .InInterval. (/2.3d0, 10.4d0/)

’Is 1 not in (1,99)7?:’, 1 .NotInInterval. (/1, 99/)

’Is 1 not in (3,7)?:’, 1 .NotInInterval. (/3, 7/)

’Is (6,3,4) not in (3,7)7:°, &

(/6, 3, 4/) .NotInInterval. (/3, 7/)

’Is (16,-3,14,8) not in (3,7)7:’, &

(/16, -3, 14, 8/) .NotInInterval. (/3, 7/)

’Is 1.0 not in (1.0,99.0)7:’, 1.d0 .NotInInterval. (/1.d40, 99.40/)
’Is 3.14159 not in (2.3,10.4)7:7, &

3.14159d0 .NotInInterval. (/2.3d0, 10.4d0/)

’Is (3.14159,4.2,5.8) not in (2.3,10.4)7:’, &

(/3.14159d40, 4.2d0, 5.8d0/) .NotInInterval. (/2.3d0, 10.4d0/)
’Is (-3.14159,14.2,-5.8,14.0) not in (2.3,10.4)7:’, &
(/-3.1415940, 14.2d0, -5.8d40, 14.40/) &

.NotInInterval. (/2.3d0, 10.440/)

! Finalize logicals.

call Finalize (L)
call Finalize (L3)

end

B.5 Character Class Code Listing

The main documentation of the Character Class in § 7.5 on page 54 contains additional explanation of this
code listing.

Author: Michael L. Hall
P.O.

Box 1663, MS-D413, LANL

Los Alamos, NM 87545

ph:

505-665-4312

email: Hall@LANL.gov

! Created on: 1/18/99
! CVS Info:

$Id: character.F90,v 6.10 2006/10/12 18:30:29 hall Exp $

module Caesar_Character_Class

! Global use associations.

268 APPENDIX B. INTRINSICS MODULE CODE LISTING

use Caesar_Status_Class
! Start up with everything untyped and private.

implicit none
private

! Public procedures.

public :: Initialize, Finalize, Valid_State, Valid_State_NP
REPLICATE_INTERFACE([Initialize], [Initialize_Character])
REPLICATE_INTERFACE([Finalize], [Finalize_Character])

REPLICATE_INTERFACE([Valid_State], [Valid_State_Character_P])
REPLICATE_INTERFACE([Valid_State_NP], [Valid_State_Character_NP])

contains

The Character_Class contains the following routines which are listed in separate sections:

Initialize_Character (§ B.5.1, page 268)
Finalize_Character (§ B.5.2, page 270)
Valid_State_Character (§ B.5.3, page 272)

end module Caesar_Character_Class

B.5.1 Inmitialize_Character Procedure

The main documentation of the Initialize_Character Procedure in § 7.5.1 on page 54 contains additional
explanation of this code listing.

subroutine Initialize_Character_0 (C, status)
! Use association information.
use Caesar_Flags_Module, only: initialize_character_flag
! OQutput variables.

type(character,*), intent(out) :: C ! Variable to be initialized.
type(Status_type), intent(out), optional :: status ! Exit status.

! Verify requirements - none.
! Initialize to flag value.

C = initialize_character_flag

B.5. CHARACTER CLASS CODE LISTING 269

! No errors for initialization possible for scalars.
if (PRESENT(status)) status = ’Success’
! Verify guarantees - none.

return
end subroutine Initialize_Character_0O

define ([REPLICATE_ROUTINE], [
subroutine Initialize_Character_$1 (C REP_ARGS([dim[]i]), status)

! Use association information.

use Caesar_Flags_Module, only: initialize_character_flag

! Input variable.

REP_DECLARE([type(integer), intent(in)], [dim[]i]) ! Array dimensions.
! Input/Output variable.

type(character,*,$1) :: C ! Variable to be initialized.

! Output variable.

type(Status_type), intent(out), optional :: status ! Exit status.

! Internal variable.

type(integer) :: allocate_status ! Allocation Status.

! Verify requirements.

! The association status of a unallocated pointer is officially

! undefined according to the Fortran standard. With most compilers,
! the status is unassociated.

ifelse (COMPILER, NAGWare,
o, t

VERIFY(.not.ASSOCIATED(C), 0) ! C starts out unassociated.
D
! Allocation (for arrays only).
REP_ALLOCATE([C], [dim[]i], [allocate_status])
! Initialize to flag value.

C = initialize_character_flag

! Verify guarantees and/or set status flag.

270 APPENDIX B. INTRINSICS MODULE CODE LISTING

if (PRESENT(status)) then
WARN_IF(allocate_status /= 0, 3) ! Allocation error check.
WARN_IF(.not.ASSOCIATED(C),3) ! C is now associated.
if (allocate_status == Q0 .and. ASSOCIATED(C)) then
status = ’Success’
else
status = ’Memory Error’
end if
else
VERIFY(allocate_status == 0, 0) ! Allocation error check.
VERIFY (ASSOCIATED(C) ,0) ! C is now associated.
end if

return
end subroutine Initialize_Character_$1

D

REPLICATE_ARRAYS

B.5.2 Finalize_Character Procedure

The main documentation of the Finalize_Character Procedure in § 7.5.2 on page 55 contains additional
explanation of this code listing.

subroutine Finalize_Character_0 (C, status)
! Use association information.
use Caesar_Flags_Module, only: finalize_character_flag
! Input/Output variable.
type(character,*), intent(inout) :: C ! Variable to be finalized.
! Qutput variable.

type(Status_type), intent(out), optional :: status ! Exit status.

! Verify requirements - none.

! Finalization.

C = finalize_character_flag

! No errors for finalization possible for scalars.
if (PRESENT(status)) status = ’Success’

! Verify guarantees - none.

B.5.

CHARACTER CLASS CODE LISTING 271

return

end subroutine Finalize_Character_0

define ([REPLICATE_ROUTINE], [

D

subroutine Finalize_Character_$1 (C, status)
! Input/Output variable.
type(character,*,$1) :: C ! Variable to be finalized.
! Output variable.
type(Status_type), intent(out), optional :: status ! Exit status.
! Internal variable.

type(integer) :: deallocate_status ! Deallocation Status.

! Verify requirements.

VERIFY (ASSOCIATED(C),0) ! C should be associated.
! Deallocation.

DEALLOCATE(C, stat=deallocate_status)

! Finalization and nullification.

NULLIFY(C)

! Verify guarantees and/or set status flag.

if (PRESENT(status)) then
WARN_IF(deallocate_status /= 0, 3) ! Deallocation error check.

WARN_IF(ASSOCIATED(C),3) ! C is now unassociated.
if (deallocate_status == 0 .and. .not.ASSOCIATED(C)) then
status = ’Success’
else
status = ’Memory Error’
end if
else
VERIFY (deallocate_status == 0, 0) ! Deallocation error check.
VERIFY(.not.ASSOCIATED(C), 0) ! C is now unassociated.
end if
return

end subroutine Finalize_Character_$1

REPLICATE_ARRAYS

272 APPENDIX B. INTRINSICS MODULE CODE LISTING

B.5.3 Valid_State_Character Procedure

The main documentation of the Valid_State_Character Procedure in § 7.5.3 on page 55 contains additional
explanation of this code listing.

define ([REPLICATE_ROUTINE], [

ifelse(POINTER_TOGGLE, [TRUE], [
pushdef ([TYPE], [character,*,$1])
pushdef ([Valid_State_Character_P_DIM], expand(Valid_State_Character_P_$1))
pushdef ([POINTER_ONLY], [])
pushdef ([NONPOINTER_ONLY], [!])

1,
pushdef ([TYPE], [character,*,$1,np]l)
pushdef ([Valid_State_Character_P_DIM], expand(Valid_State_Character_NP_$1))
pushdef ([POINTER_ONLY], [!])
pushdef ([NONPOINTER_ONLY], [])

D)

function Valid_State_Character_P_DIM (C) result(Valid)
! Use association information.
SCALAR_ONLY use Caesar_Flags_Module, only: finalize_character_flag
! Input variable.
type(TYPE) :: C ! Variable to be checked.
! Output variable.

type(logical) :: Valid ! Logical state.

! Start out true.
Valid = .true.
! First, make sure that the variable has been allocated.

POINTER_ONLY ARRAY_ONLY Valid = Valid .and. ASSOCIATED(C)
POINTER_ONLY ARRAY_ONLY if (.not.Valid) return

! Make sure the variable has not been finalized.
SCALAR_ONLY Valid = Valid .and. C /= finalize_character_flag

! Quiet compiler warnings by making sure C is always referenced.
! Note the ’or’ which means that this test has no effect.

INONPOINTER_ONLY ARRAY_ONLY Valid = Valid .or. LEN(C) /= 0

return

B.5. CHARACTER CLASS CODE LISTING 273

end function Valid_State_Character_P_DIM

popdef ([TYPE])
popdef ([Valid_State_Character_P_DIM])
popdef ([POINTER_ONLY])
popdef ([NONPOINTER_ONLY])
D

define ([POINTER_TOGGLE], [TRUE])
REPLICATE

define ([POINTER_TOGGLE], [FALSE])
REPLICATE

B.5.4 Character Class Unit Test Program

This lightly commented program performs a unit test on the Character Class, which is described in § 7.5 on
page b4.

program Unit_Test

use Caesar_Character_Class
implicit none

type(character,10) :: C
type(character,20), pointer, dimension(:,:,:) :: C3

! Initializations.

call Initialize (C)
call Initialize (C3, 3, 4, 5b)

! Character tests.

VERIFY(Valid_State(C),0)
VERIFY(Valid_State(C3),0)

write (6,%) ’°C =7’,C

write (6,%) ’C3(1,1,1) = ’, €3(1,1,1)

C = ’Test Value’
C3(1,1,1) = ’Test Value’

VERIFY(Valid_State(C),0)
VERIFY(Valid_State(C3),0)

write (6,*) °C =’ C

write (6,*) °C3(1,1,1) =, C3(1,1,1)

! The bottom line is that there are really no invalid characters. The
! Valid_State_Character routine is primarily added for completeness.

! Finalizations.

274 APPENDIX B. INTRINSICS MODULE CODE LISTING

call Finalize (C)
call Finalize (C3)

! Output scalar value again.
write (6,*) ’°C =’,C
! Should be invalid.

write(6,*) ’Valid_State(C) =’, Valid_State(C)

end

Appendix C

Utilities Module Code Listing

The main documentation of the Utilities Module in chapter 8 on page 57 contains additional explanation of
this code listing.

1
! Author: Michael L. Hall

! P.0. Box 1663, MS-D413, LANL
! Los Alamos, NM 87545

! ph: 505-665-4312

! email: Hall@LANL.gov

1

! Created on: 04/19/01
! CVS Info: $Id: utilities.F90,v 1.3 2007/10/10 22:09:30 hall Exp $

module Caesar_Utilities_Module
! Global use associations.
use Caesar_Intrinsics_Module
use Caesar_F2003_Utils_Module
use Caesar_Shell_Utils_Module

use Caesar_Text_Utils_Module

! Start up with everything untyped and public.
! Note: this module contains no private information.

implicit none
public

end module Caesar_Utilities_Module

C.1 F2003_Utils Module Code Listing

The main documentation of the F2003_Utils Module in § 8.1 on page 57 contains additional explanation of
this code listing.

275

276 APPENDIX C. UTILITIES MODULE CODE LISTING

! Author: Michael L. Hall

! P.0. Box 1663, MS-D413, LANL
! Los Alamos, NM 87545

! ph: 505-665-4312

! email: Hall@LANL.gov

1

! Created on: 10/20/06
! CVS Info: $Id: £2003_utils.F90,v 1.3 2008/04/09 18:08:04 hall Exp $

module Caesar_F2003_Utils_Module
! Global use associations.
use Caesar_Intrinsics_Module
! Start up with everything untyped and private.

implicit none
private

! Public procedures.
public :: Command_Argument_Count, Get_Command_Argument
interface Command_Argument_Count
module procedure Command_Argument_Count_F2003
end interface
interface Get_Command_Argument
module procedure Get_Command_Argument_F2003

end interface

contains

The F2003_Utils Module contains the following routines which are listed in separate sections:

Command_Argument_Count F2003 (§ C.1.1, page 276)

Get_Command_Argument F2003 (§ C.1.2, page 277)

end module Caesar_F2003_Utils_Module

C.1.1 Command_Argument_Count_F2003 Procedure

The main documentation of the Command_Argument_Count_F2003 Procedure in § 8.1.1 on page 57 contains
additional explanation of this code listing.

function Command_Argument_Count_F2003 () result(Command_Argument_Count)
! Local use associations.

ifelse (COMPILER, NAGWare, [

C.1. F2003_UTILS MODULE CODE LISTING 277

use F90_Unix_Env, only: IARGC
D

! OQutput variable.

type(integer) :: Command_Argument_Count ! The number of command arguments.
! Internal variable.

ifelse (COMPILER, NAGWare,

0o, t
type(integer) :: IARGC ! Fortran/C intrinsic function.

D

! Verify requirements - none.

! Set command_argument_count.
Command_Argument_Count = IARGC()
! Verify guarantees.

VERIFY(Command_Argument_Count > -1,5) ! Command_Argument_Count is valid.

return
end function Command_Argument_Count_F2003

C.1.2 Get_Command Argument F2003 Procedure

The main documentation of the Get_Command_Argument_F2003 Procedure in § 8.1.2 on page 58 contains
additional explanation of this code listing.

subroutine Get_Command_Argument_F2003 (Number, Argument)
! Local use associations.
ifelse (COMPILER, NAGWare, [
use F90_Unix_Env, only: GETARG
D
! Input variables.
type(integer), intent(in) :: Number ! The number of the argument.

! OQutput variables.

type(character,*), intent(out) :: Argument ! The argument.

278 APPENDIX C. UTILITIES MODULE CODE LISTING

! Verify requirements.

! Number is in the correct range.
VERIFY (Number.InInterval. (/0,COMMAND_ARGUMENT_COUNT()/),5)

! Get the argument.
call GETARG (Number, Argument)
! Verify guarantees - none.

return
end subroutine Get_Command_Argument_F2003

C.1.3 F2003_Utils Module Unit Test Program

This lightly commented program performs a unit test on the F2003_Utils Module, which is described in § 8.1
on page 57.

program Unit_Test

use Caesar_Intrinsics_Module
use Caesar_F2003_Utils_Module
implicit none

type(integer) :: i
type(character,80) :: Argument

! Testing statements.

write (6,%) ’ ?
write (6,*) ’Command_Argument_Count = > . COMMAND_ARGUMENT_COUNT ()
do i = 0, COMMAND_ARGUMENT_COUNT ()

call GET_COMMAND_ARGUMENT (i, Argument)

write (6,*) ’Argument ’, i, ’ = >, TRIM(Argument)
end do

end

C.2 Shell Utils Module Code Listing

The main documentation of the Shell Utils Module in § 8.2 on page 58 contains additional explanation of
this code listing.

! Author: Michael L. Hall

! P.0. Box 1663, MS-D409, LANL
! Los Alamos, NM 87545

! ph: 505-665-4312

C.2. SHELL_UTILS MODULE CODE LISTING 279

! email: Hall@LANL.gov
!

! Created on: 04/19/01
! CVS Info: $Id: shell_utils.F90,v 1.5 2005/01/27 16:42:40 hall Exp $

module Caesar_Shell_Utils_Module
! Global use associations.
use Caesar_Intrinsics_Module
! Start up with everything untyped and private.

implicit none
private

! Public procedures.
public :: Basename, Dirname
interface Basename
module procedure Basename_Shell_Utils
end interface
interface Dirname
module procedure Dirname_Shell_Utils

end interface

contains

The Shell_Utils Module contains the following routines which are listed in separate sections:

Basename_Shell Utils (§ C.2.1, page 279)

Dirname_Shell Utils (§ C.2.2, page 281)

end module Caesar_Shell_Utils_Module

C.2.1 Basename_Shell Utils Procedure

The main documentation of the Basename Shell Utils Procedure in § 8.2.1 on page 59 contains additional
explanation of this code listing.

function Basename_Shell_Utils (Filename, Suffix_Strip) result(Basename)
! Input variables.

type(character,*), intent(in) :: Filename ! Filename.
type(logical), intent(in), optional :: Suffix_Strip ! Suffix strip toggle.

! OQutput variables.

280 APPENDIX C. UTILITIES MODULE CODE LISTING

type(character,255) :: Basename ! The basename of the filename.

! Internal variables.

integer :: basename_left ! Left extent of the basename.
integer :: basename_right ! Right extent of the basename.
logical :: A_Suffix_ Strip ! Actual suffix strip toggle.

! Verify requirements.

VERIFY(Valid_State(Filename),5) ! Filename is valid.
VERIFY(LEN_TRIM(Filename) /= 0,5) ! Filename is non-null.

! Set suffix strip toggle.
if (PRESENT(Suffix_Strip)) then
A_Suffix Strip = Suffix_ Strip
else
A_Suffix Strip = .true.
end if
! Determine first character in basename.
basename_left = MAX(1, INDEX(Filename, ’/’, .true.) + 1)

! Determine final character in basename.

if (A_Suffix_Strip) then

basename_right = INDEX(Filename, ’.’, .true.) - 1
if (basename_right == -1 .or. basename_right < basename_left) then
basename_right = LEN_TRIM(Filename)
end if
else
basename_right = LEN_TRIM(Filename)
end if

! Set basename.

Basename = Filename(basename_left:basename_right)

! Verify guarantees.

VERIFY(Valid_State(Basename) ,5) ! Basename is valid.

return
end function Basename_Shell_Utils

C.2. SHELL_UTILS MODULE CODE LISTING 281

C.2.2 Dirname_Shell Utils Procedure

The main documentation of the Dirname_Shell Utils Procedure in § 8.2.2 on page 59 contains additional
explanation of this code listing.

function Dirname_Shell_Utils (Filename) result(Dirname)
! Input variables.
type(character,*), intent(in) :: Filename ! Filename.
! OQutput variables.
type(character,255) :: Dirname ! The dirname of the filename.
! Internal variables.

integer :: dirname_right ! Right extent of the dirname.

! Verify requirements.

VERIFY(Va