Development of a Radiochemical Sensor for Environmental Applications

T. A. DeVol¹, J. E. Roane¹, J.M. Williamson², J. M. Duffey² and J. T. Harvey²

¹Department of Environmental Engineering and Science, Clemson University, Clemson, SC 29634-0919 ²Eichrom Industries, Inc., 8205 South Cass Avenue Suite 107, Darien, IL 60561

This research demonstrates the principal of combining a selective extractant material with a scintillator support to produce a dual-purpose radiochemical sensor. The dual-purpose (ScintEx) resin was produced by impregnating inert polystyrene, typically used in extraction chromatographic resins, with organic fluors (PPO and DM-POPOP) to produce a scintillating support which was subsequently impregnated with the extractant. The resultant actinideselective ScintEx resin was evaluated off-line using a conventional liquid scintillation counter. These tests were conducted by packing the ScintEx resin into opaque chromatography columns. Columns were loaded with 60 Bq of 241 Am then trimmed to fit into a 7-ml liquid scintillation vial. The absolute detection efficiency for 241 Am was calculated to be 98%. Subsequently, actinide-selective and strontium-selective ScintEx resins were evaluated on-line using a flow-cell scintillation detection system. The absolute detection efficiencies for ²³³U and ²⁴¹Am alpha particles sorbed to the actinide-selective ScintEx resin, and ⁹⁰Sr beta particles sorbed to the strontium-selective ScintEx resin were ~100% and ~30%, respectively. The capacity factor, $k \phi$ for uranium (VI) in a 2.0 M HNO₃ solution was experimentally determined with the actinideselective ScintEx resin to be ~3000. The increased retention (count-time) of the analyte in the flow-cell was determined from the k' and was used to calculate the minimum detectable concentration for uranium to be 22 Bq/m³ (0.6 pCi/L) for the on-line measurement.