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Telluride LSLR Method Derivation

(Gleaned from looking at the code itself! May be incorrect.)

Assume a diffusion equation of the form:

∂Φ

∂t
−

−→
∇ ·D

−→
∇ Φ = 0

Integrate over the cell and use Green’s Theorem to yield:

∂Φc

∂t
Vc −

∮

D
−→
∇ Φ ·

−→
dA = 0

Discretize spatially by looping over faces:

∂Φc

∂t
Vc −

∑

f

Df
−→
∇ Φ

∣

∣

∣

∣

∣

f

·
−→
Af = 0

Everything here is known except
−→
∇ Φ

∣

∣

∣

∣

∣

f

, so that must be ex-

pressed in terms of our unknowns, chosen to be the set of cell-

center variables, {Φc}.
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Telluride LSLR Method Derivation

Assume a Taylor series expansion for Φ around the value at a face:

Φ = Φf +
∂Φ

∂x
∆x +

∂Φ

∂y
∆y +

∂Φ

∂z
∆z + O

(

∆x2
)

Define a set of “neighbor” cells for this face, denoted by “c of f”, with a total

number of C cells.

Use the linearized Taylor series expansion at each of the neighbor cells.†

Do a least squares fit of the linearized Taylor series expansion, using all of the

neighbor cells, to determine Φf and
−→
∇Φ. The χ2 function for each individual

face is:

χ2
f =

∑

c of f

wcf

[

Φc − Φf −
∂Φ

∂x

∣

∣

∣

∣

f

∆xcf −
∂Φ

∂y

∣

∣

∣

∣

f

∆ycf −
∂Φ

∂z

∣

∣

∣

∣

f

∆zcf

]2

where wcf is a weight applied to each neighbor cell for a given face.

† Note that this assumes that the gradient is the same over this set of cells,

which is strictly true only if D is constant over all of these cells. If D

varies slowly, then this may be a good assumption. This is the “material

discontinuity” issue. Since D represents density in Telluride, this is probably

a good assumption for liquid/solid flow of similar materials, but is not a good

assumption for gas/liquid flow, where densities may differ by a factor of 103.
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Telluride LSLR Method Derivation

Take derivatives wrt the constants to be determined (Φf , ∂Φ
∂x

∣

∣

f
, ∂Φ

∂y

∣

∣

∣

f
, and

∂Φ
∂z

∣

∣

f
) and set equal to zero:

0 = −2
∑

c of f

wcf

[

Φc − Φf −
∂Φ

∂x

∣

∣

∣

∣

f

∆xcf −
∂Φ

∂y

∣

∣

∣

∣

f

∆ycf −
∂Φ

∂z

∣

∣

∣

∣

f

∆zcf

]

0 = −2
∑

c of f

wcf

[

Φc∆xcf − Φf∆xcf −
∂Φ

∂x

∣

∣

∣

∣

f

∆xcf∆xcf

−
∂Φ

∂y

∣

∣

∣

∣

f

∆ycf∆xcf −
∂Φ

∂z

∣

∣

∣

∣

f

∆zcf∆xcf

]

0 = −2
∑

c of f

wcf

[

Φc∆ycf − Φf∆ycf −
∂Φ

∂x

∣

∣

∣

∣

f

∆xcf∆ycf

−
∂Φ

∂y

∣

∣

∣

∣

f

∆ycf∆ycf −
∂Φ

∂z

∣

∣

∣

∣

f

∆zcf∆ycf

]

0 = −2
∑

c of f

wcf

[

Φc∆zcf − Φf∆zcf −
∂Φ

∂x

∣

∣

∣

∣

f

∆xcf∆zcf

−
∂Φ

∂y

∣

∣

∣

∣

f

∆ycf∆zcf −
∂Φ

∂z

∣

∣

∣

∣

f

∆zcf∆zcf

]
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Telluride LSLR Method Derivation

Grouping terms:








∑

wcf

∑

wcf∆xcf

∑

wcf∆ycf

∑

wcf∆zcf
∑

wcf∆xcf

∑

wcf∆xcf∆xcf

∑

wcf∆ycf∆xcf

∑

wcf∆zcf∆xcf
∑

wcf∆ycf

∑

wcf∆xcf∆ycf

∑

wcf∆ycf∆ycf

∑

wcf∆zcf∆ycf
∑

wcf∆zcf

∑

wcf∆xcf∆zcf

∑

wcf∆ycf∆zcf

∑

wcf∆zcf∆zcf









×











Φf

∂Φ

∂x

∣

∣

f
∂Φ

∂y

∣

∣

f
∂Φ

∂z

∣

∣

f











=









∑

wcfΦc
∑

wcfΦc∆xcf
∑

wcfΦc∆ycf
∑

wcfΦc∆ycf









Scale first column and first row by an average ∆x, 〈∆x〉, presumably to improve the
condition number of the matrix and/or to make all terms have the same units:









〈∆x〉2
∑

wcf 〈∆x〉
∑

wcf∆xcf 〈∆x〉
∑

wcf∆ycf 〈∆x〉
∑

wcf∆zcf

〈∆x〉
∑

wcf∆xcf

∑

wcf∆xcf∆xcf

∑

wcf∆ycf∆xcf

∑

wcf∆zcf∆xcf

〈∆x〉
∑

wcf∆ycf

∑

wcf∆xcf∆ycf

∑

wcf∆ycf∆ycf

∑

wcf∆zcf∆ycf

〈∆x〉
∑

wcf∆zcf

∑

wcf∆xcf∆zcf

∑

wcf∆ycf∆zcf

∑

wcf∆zcf∆zcf









×











Φf/ 〈∆x〉

∂Φ

∂x

∣

∣

f
∂Φ

∂y

∣

∣

f
∂Φ

∂z

∣

∣

f











=









〈∆x〉
∑

wcfΦc
∑

wcfΦc∆xcf
∑

wcfΦc∆ycf
∑

wcfΦc∆ycf









This is where the present Telluride coding stops. When fluxes are needed, the current
values for Φc are inserted into the RHS, the summations are done, and the matrix on
the LHS is inverted via LU to get the gradient vector.

It is possible, however, to solve for the gradient in terms of the set of Φc variables, so
that a global matrix may be formed.
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Telluride LSLR Method - Matrix Formation

Re-write the RHS:








〈∆x〉2
∑

wcf 〈∆x〉
∑

wcf∆xcf 〈∆x〉
∑

wcf∆ycf 〈∆x〉
∑

wcf∆zcf

〈∆x〉
∑

wcf∆xcf

∑

wcf∆xcf∆xcf

∑

wcf∆ycf∆xcf

∑

wcf∆zcf∆xcf

〈∆x〉
∑

wcf∆ycf

∑

wcf∆xcf∆ycf

∑

wcf∆ycf∆ycf

∑

wcf∆zcf∆ycf

〈∆x〉
∑

wcf∆zcf

∑

wcf∆xcf∆zcf

∑

wcf∆ycf∆zcf

∑

wcf∆zcf∆zcf









×











Φf/ 〈∆x〉

∂Φ

∂x

∣

∣

f
∂Φ

∂y

∣

∣

f
∂Φ

∂z

∣

∣

f











=







〈∆x〉w1f 〈∆x〉w2f 〈∆x〉w3f . . . 〈∆x〉wCf

w1f∆x1f w2f∆x2f w3f∆x3f . . . wCf∆xCf

w1f∆y1f w2f∆y2f w3f∆y3f . . . wCf∆yCf

w1f∆z1f w2f∆z2f w3f∆z3f . . . wCf∆zCf













Φ1

Φ2

Φ3

. . .
ΦC







Symbolicly, this can be written:

BfFf = GfΦc of f

where Φc of f signifies that the Φ vector contains all the neighbor cells for a

given face. The unknowns in this equation are Ff and Φc of f . We want to

write the unknowns Ff in terms of the unknowns Φc of f . Bf is small (4x4),

so we can invert it to get:

Ff = B−1
f GfΦc of f

Parts of Ff are the flux components that we are looking for. The rectangular

matrix B−1
f Gf gives the coefficients for the cell-center Φc’s needed to represent

the flux components in a matrix. We don’t need the first entry of Ff (which

contains Φf/ 〈∆x〉), but only the 2nd through 4th entries, which comprise the

gradient. So, we only need the 2nd through 4th rows of B−1
f Gf , which we will

denote by
(

B−1
f Gf

)

234
, such that









∂Φ
∂x

∣

∣

f

∂Φ
∂y

∣

∣

∣

f
∂Φ
∂z

∣

∣

f









=
(

B−1
f Gf

)

234
Φc of f
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Telluride LSLR Method - Matrix Formation

Now, look back at this equation from slide 2:

∂Φc

∂t
Vc −

∑

f

Df

−→
∇Φ

∣

∣

∣

∣

f

·
−→
Af = 0

We can now represent
−→
∇Φ

∣

∣

∣

∣

f

in terms of the global set of cell-center variables,

{Φc}. Changing from vector representation to matrix representation:

∂Φc

∂t
Vc −

∑

f

Df









∂Φ
∂x

∣

∣

f

∂Φ
∂y

∣

∣

∣

f
∂Φ
∂z

∣

∣

f









T

Af = 0

Or,

∂Φc

∂t
Vc −

∑

f

DfA
T
f









∂Φ
∂x

∣

∣

f

∂Φ
∂y

∣

∣

∣

f
∂Φ
∂z

∣

∣

f









= 0

Substituting our derived LSLR form gives

∂Φc

∂t
Vc −

∑

f

DfA
T
f

(

B−1
f Gf

)

234
Φc of f = 0

Building a matrix by going further than this step is easy in practise, but cum-

bersome using matrix representation. Basically, we first calculate the coefficient

vector denoted by DfA
T
f

(

B−1
f Gf

)

234
for each face (note that it is a row vec-

tor with length equal to the number of neighbor cells for a given face). Then,

we distribute this vector of coefficients into the global matrix, adding an entry

for each neighbor cell of the currect face in the proper location. The entries are

gotten by looping over cells, then looping over faces for each cell, then looping

over neighbor cells for each face for each cell.
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Telluride LSLR Method -
Orthogonal Mesh Stencils

On an orthogonal, uniform mesh, with constant D, the method reduces to
a simple stencil.† On this (i, j, k) mesh, the neighbor cells for a face at
(

i + 1
2
, j, k

)

, are taken to be the 18 cells (in a 2x3x3 block) within the range
(i : i + 1, j − 1 : j + 1, k − 1 : k + 1)

i i+1

j−1

j

j+1

k−1

k

k+1

Similarly, in 2-D there are 6 cells in a 2x3 block within the range
(i : i + 1, j − 1 : j + 1), and in 1-D there are 2 cells in the range (i : i + 1).

We label the mesh spacing h in each direction and we refer to the cells in the
following ranges by these names:

Major axis cells (i : i + 1, j, k)
Edge cells (i : i + 1, j − 1, k) , (i : i + 1, j + 1, k) ,

(i : i + 1, j, k − 1) , (i : i + 1, j, k + 1)
Corner cells (i : i + 1, j − 1, k − 1) , (i : i + 1, j − 1, k + 1) ,

(i : i + 1, j + 1, k − 1) , (i : i + 1, j + 1, k + 1)

Note that 2-D has no corner cells, and 1-D consists only of major axis cells.

†Doug Kothe’s notes from 12/01/01 show this reduction explicitly for the 2-D,
wcf = 1

d2

cf

situation (where dcf is the distance between cell-center c and

face-center f ).
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Telluride LSLR Method -

Orthogonal Mesh Stencils

Examine the Bf matrix from the top of slide 6:








〈∆x〉2
∑

wcf 〈∆x〉
∑

wcf∆xcf 〈∆x〉
∑

wcf∆ycf 〈∆x〉
∑

wcf∆zcf

〈∆x〉
∑

wcf∆xcf

∑

wcf∆xcf∆xcf

∑

wcf∆ycf∆xcf

∑

wcf∆zcf∆xcf

〈∆x〉
∑

wcf∆ycf

∑

wcf∆xcf∆ycf

∑

wcf∆ycf∆ycf

∑

wcf∆zcf∆ycf

〈∆x〉
∑

wcf∆zcf

∑

wcf∆xcf∆zcf

∑

wcf∆ycf∆zcf

∑

wcf∆zcf∆zcf









Note that the neighbor cells can be grouped into (i, i + 1) pairs. These pairs
have opposite signs for the ∆xcf factors, but exactly the same ∆ycf and ∆zcf

factors. If we further assume that any weights are constants or functions of
distance (which is the same for both members of a pair), then any sums which
contain a single ∆xcf are identically zero:








〈∆x〉2
∑

wcf 0 〈∆x〉
∑

wcf∆ycf 〈∆x〉
∑

wcf∆zcf

0
∑

wcf∆xcf∆xcf 0 0

〈∆x〉
∑

wcf∆ycf 0
∑

wcf∆ycf∆ycf

∑

wcf∆zcf∆ycf

〈∆x〉
∑

wcf∆zcf 0
∑

wcf∆ycf∆zcf

∑

wcf∆zcf∆zcf









Similarly,
∑

wcf∆ycf consists of terms for j, which have a zero ∆ycf , and
matched pairs for the (j − 1, j + 1) terms, which are opposite in sign but
otherwise equal. Ditto for

∑

wcf∆zcf :








〈∆x〉2
∑

wcf 0 0 0

0
∑

wcf∆xcf∆xcf 0 0

0 0
∑

wcf∆ycf∆ycf

∑

wcf∆zcf∆ycf

0 0
∑

wcf∆ycf∆zcf

∑

wcf∆zcf∆zcf








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Telluride LSLR Method -

Orthogonal Mesh Stencils

Finally,
∑

wcf∆ycf∆zcf has zero entries for the j and k terms, since they
have zero ∆ycf or ∆zcf . This leaves only the eight corner cells, which consist
of two sets of four cells that have the same absolute values for ∆ycf∆zcf , but
these sign combinations: ++,−−,−+, +−. With this sum set to zero, we
see that the matrix reduces to a diagonal matrix:

Bf =









〈∆x〉2
∑

wcf 0 0 0

0
∑

wcf∆xcf∆xcf 0 0

0 0
∑

wcf∆ycf∆ycf 0

0 0 0
∑

wcf∆zcf∆zcf









which is easily inverted. The area vector for this face (where q is the dimen-
sionality) is

Af =







hq−1

0

0







which selects only the first row of
(

B−1
f Gf

)

234
, such that

AT
f

(

B−1
f Gf

)

234
=

hq−1

∑

wcf∆xcf∆xcf

[

w1f∆x1f w2f∆x2f . . . wCf∆xCf

]

When evaluating the summation, recognize that all neighbor cells have the
same value for ∆xcf∆xcf :

∑

wcf∆xcf∆xcf =
h2

4

∑

wcf
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Telluride LSLR Method -

Orthogonal Mesh Stencils

All the neighbor cells also have the same ∆xcf , except for the sign. Denoting
the sign as Scf :

AT
f

(

B−1
f Gf

)

234
=

2hq−2

∑

wcf

[

w1fS1f w2fS2f . . . wCfSCf

]

This leads to the following face stencils:

Dimension wcf = 1 wcf = 1/d2
cf

1-D 1
h

[

−1 1

]

1
h

[

−1 1

]

2-D 1
3













−1 1

−1 1

−1 1













1
7













−1 1

−5 5

−1 1













3-D h
9













−1 −1 −1

−1 −1 −1

−1 −1 −1













, h
101













−5 −9 −5

−9 −45 −9

−5 −9 −5













,

h
9













1 1 1

1 1 1

1 1 1













h
101













5 9 5

9 45 9

5 9 5












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Telluride LSLR Method -

Orthogonal Mesh Stencils

The face stencils are valid for all faces of the cell, due to the uniformity of the
grid. For the negative faces of the cell, the area vector is negative, which flips
the stencil so that the part with the negative numbers is always on the interior
side of the face.

Evaulating this equation:

1

Vc

∫

c

∇2Φ dV =
1

hq

∑

f

AT
f

(

B−1
f Gf

)

234
Φc of f

leads to the Laplacian stencils for the cell . . .
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Telluride LSLR Method -

Orthogonal Mesh Stencils

Dimension wcf = 1 wcf = 1/d2
cf

1-D 1
h2

[

1 −2 1

]

1
h2

[

1 −2 1

]

2-D 1
3h2













2 −1 2

−1 −4 −1

2 −1 2













1
7h2













2 3 2

3 −20 3

2 3 2













1
3h2













1 0 1

0 −1 0

1 0 1













, 1
101h2













15 8 15

8 9 8

15 8 15













,

1
3h2













0 −1 0

−1 −2 −1

0 −1 0













, 1
101h2













8 9 8

9 −270 9

8 9 8













,3-D

1
3h2













1 0 1

0 −1 0

1 0 1













1
101h2













15 8 15

8 9 8

15 8 15












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Telluride LSLR Method -

Orthogonal Accuracy Order

To determine the accuracy order for the orthogonal stencils, start with the
Taylor series expansion for Φ around the value at a cell center:

Φ = Φc +
∑

n=1,∞

1

n!

{

∆x
∂

∂x

∣

∣

∣

∣

c

+ ∆y
∂

∂y

∣

∣

∣

∣

c

+ ∆z
∂

∂z

∣

∣

∣

∣

c

}n

Φ

Next, expand each of the six stencils using this series and cancel terms to see
what remains.

The constant Φc term will be zero if the stencil sums to zero, which is true for
all of the cases.

The n = 1 (linear) terms will be zero due to cancellations if the stencil is
symmetric along the x, y, and z planes, which is also true for all of the cases.

The n = 2 terms can be grouped into 6 mixed terms (e.g. 1
2

∆x∆y ∂2Φ
∂x∂y

∣

∣

∣

c
)

and 3 squared terms (e.g. 1
2

∆x2 ∂2Φ
∂x2

∣

∣

c
).
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Telluride LSLR Method -

Orthogonal Accuracy Order

The 3 squared terms are all similar due to stencil symmetry. The “stencil
multipliers” for the 1

2
∆x2 ∂2Φ

∂x2

∣

∣

c
term are:

Dimension Multiplier

1-D h2

2
∂2Φ
∂x2

∣

∣

c

[

1 0 1

]

2-D h2

2
∂2Φ
∂x2

∣

∣

c













1 0 1

1 0 1

1 0 1













h2

2
∂2Φ
∂x2

∣

∣

c













1 0 1

1 0 1

1 0 1













,

h2

2
∂2Φ
∂x2

∣

∣

c













1 0 1

1 0 1

1 0 1













,3-D

h2

2
∂2Φ
∂x2

∣

∣

c













1 0 1

1 0 1

1 0 1












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Telluride LSLR Method -

Orthogonal Accuracy Order

Multiplying term by term and summing yields:

Dimension wcf = 1 wcf = 1/d2
cf Standard

Discretization

1-D ∂2Φ
∂x2

∣

∣

c
∂2Φ
∂x2

∣

∣

c
∂2Φ
∂x2

∣

∣

c

2-D ∂2Φ
∂x2

∣

∣

c
∂2Φ
∂x2

∣

∣

c
∂2Φ
∂x2

∣

∣

c

3-D ∂2Φ
∂x2

∣

∣

c
∂2Φ
∂x2

∣

∣

c
∂2Φ
∂x2

∣

∣

c

The y and z dimensions are similar, so that the 3 squared terms yield the full
Laplacian, regardless of discretization or dimensionality.

The mixed secord-order term 1
2

∆x∆y ∂2Φ
∂x∂y

∣

∣

∣

c
is a representative case. This

term can be grouped into z-planes (none for 1-D, one for 2-D, and three for
3-D). Each z-plane has this stencil multiplier:

h2

2

∂2Φ

∂x∂y

∣

∣

∣

∣

c













−1 0 1

0 0 0

1 0 −1













which sums to zero. Thus, all of the mixed second-order terms are zero.
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Telluride LSLR Method -

Orthogonal Accuracy Order

The n = 3 terms can be grouped into these three categories:

• 3 cubed “3”† terms (e.g. 1
6

∆x3 ∂3Φ
∂x3

∣

∣

c
), with 1-D stencil multipliers,

[

−1 0 1
]

, which sum to zero;

• 18 mixed “2-1”† terms (e.g. 1
6

∆x2∆y ∂3Φ
∂x2∂y

∣

∣

∣

c
), grouped in z-planes with

2-D stencil multipliers,

h3

6

∂3Φ

∂x2∂y

∣

∣

∣

∣

c









1 0 1

0 0 0

−1 0 −1









,

which sum to zero; and

• 6 mixed “1-1-1”† terms (e.g. 1
6

∆x∆y∆z ∂3Φ
∂x∂y∂z

∣

∣

∣

c
), with 3-D stencil

multipliers,

h3

6

∂3Φ

∂x∂y∂z

∣

∣

∣

∣

c





1 0 −1

0 0 0

−1 0 1



 ,





0 0 0

0 0 0

0 0 0



 ,





−1 0 1

0 0 0

1 0 −1



 ,

which also sum to zero.

Therefore, the third-order terms all cancel out.

†We can refer to term categories by listing the exponents of the terms.
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Telluride LSLR Method -

Orthogonal Accuracy Order

The n = 4 terms can be grouped into these four categories (two here):

• 4 quartic “4” terms (e.g. 1
24

∆x4 ∂4Φ
∂x4

∣

∣

c
), with 1-D stencil multipliers,

[

1 0 1
]

, which sum to:

Dimension wcf = 1 wcf = 1/d2
cf Standard

Discretization

1-D h2

12
∂4Φ
∂x4

∣

∣

c
h2

12
∂4Φ
∂x4

∣

∣

c
h2

12
∂4Φ
∂x4

∣

∣

c

2-D h2

12
∂4Φ
∂x4

∣

∣

c
h2

12
∂4Φ
∂x4

∣

∣

c
h2

12
∂4Φ
∂x4

∣

∣

c

3-D h2

12
∂4Φ
∂x4

∣

∣

c
h2

12
∂4Φ
∂x4

∣

∣

c
h2

12
∂4Φ
∂x4

∣

∣

c

The y and z dimensions are analogous;

• 24 mixed “3-1” terms (e.g. 1
24

∆x3∆y ∂4Φ
∂x3∂y

∣

∣

∣

c
), grouped in z-planes with

2-D stencil multipliers,

h4

24

∂4Φ

∂x3∂y

∣

∣

∣

∣

c













−1 0 1

0 0 0

1 0 −1













,

which sum to zero;
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Telluride LSLR Method -
Orthogonal Accuracy Order

The n = 4 terms can be grouped into these four categories (two more here):

• 18 mixed “2-2” terms (e.g. 1
24

∆x2∆y2 ∂4Φ
∂x2∂y2

∣

∣

∣

c
), grouped in z-planes

with 2-D stencil multipliers,

h4

24

∂4Φ

∂x2∂y2

∣

∣

∣

∣

c









1 0 1

0 0 0

1 0 1









,

which sum to:

Dimension wcf = 1 wcf = 1/d2
cf Standard

Discretization

1-D 0 0 0

2-D 2h2

3
∂4Φ

∂x2∂y2

∣

∣

∣

c

2h2

7
∂4Φ

∂x2∂y2

∣

∣

∣

c
0

3-D 2h2

3
∂4Φ

∂x2∂y2

∣

∣

∣

c

38h2

101
∂4Φ

∂x2∂y2

∣

∣

∣

c
0

The xz and yz combinations are analogous; and

• 36 mixed “2-1-1” terms (e.g. 1
24

∆x2∆y∆z ∂4Φ
∂x2∂y∂z

∣

∣

∣

c
), with 3-D stencil

multipliers,

h4

24

∂4Φ

∂x2∂y∂z

∣

∣

∣

∣

c









−1 0 −1

0 0 0

1 0 1









,









0 0 0

0 0 0

0 0 0









,









1 0 1

0 0 0

−1 0 −1









,

which sum to zero.
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Telluride LSLR Method -

Orthogonal Accuracy Order

Therefore, the leading error terms are:

Dimension and Leading Error Terms

Discretization

1-D, Standard h2

12
∂4Φ
∂x4

∣

∣

c

1-D, wcf = 1 h2

12
∂4Φ
∂x4

∣

∣

c

1-D, wcf = 1/d2
cf

h2

12
∂4Φ
∂x4

∣

∣

c

2-D, Standard h2

12

(

∂4Φ
∂x4

+ ∂4Φ
∂y4

)
∣

∣

∣

c

2-D, wcf = 1 h2

12

(

∂4Φ
∂x4

+ ∂4Φ
∂y4

)
∣

∣

∣

c
+ 2h2

3
∂4Φ

∂x2∂y2

∣

∣

∣

c

2-D, wcf = 1/d2
cf

h2

12

(

∂4Φ
∂x4

+ ∂4Φ
∂y4

)∣

∣

∣

c
+ 2h2

7
∂4Φ

∂x2∂y2

∣

∣

∣

c

3-D, Standard h2

12

(

∂4Φ
∂x4

+ ∂4Φ
∂y4

+ ∂4Φ
∂z4

)
∣

∣

∣

c

3-D, wcf = 1 h2

12

(

∂4Φ
∂x4

+ ∂4Φ
∂y4

+ ∂4Φ
∂z4

)
∣

∣

∣

c
+

2h2

3

(

∂4Φ
∂x2∂y2

+ ∂4Φ
∂x2∂z2

+ ∂4Φ
∂y2∂z2

)∣

∣

∣

c

3-D, wcf = 1/d2
cf

h2

12

(

∂4Φ
∂x4

+ ∂4Φ
∂y4

+ ∂4Φ
∂z4

)
∣

∣

∣

c
+

38h2

101

(

∂4Φ
∂x2∂y2

+ ∂4Φ
∂x2∂z2

+ ∂4Φ
∂y2∂z2

)∣

∣

∣

c
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Telluride LSLR Method -

Orthogonal Accuracy Order

In general, expansion terms must consist of only even exponents to give non-
zero sums. This means that the fifth-order (h3) terms for all discretizations
sum to zero.

So, all of the discretizations expand to this form:

∇2Φ
∣

∣

c
+ {Leading Error Terms} + O

(

h4
)

The leading error terms for the Standard Discretization derived here agree
exactly with the 1-D and 2-D results reported in Numerical Solution of Partial

Differential Equations: Finite Difference Methods, by G. D. Smith, pgs. 98
and 221.

We can’t really compare the errors between the discretizations in an abso-
lute sense, because the derivatives are all independent and may even include
opposite signs causing cancellations.

However, to get a rough feel for the relative difference in error between the
discretizations, we assume that all the fourth-order derivatives are unity, and
then divide by the result for the Standard Discretization to get a very loose
estimate of relative error:

Dimension wcf = 1 wcf = 1/d2
cf Standard

Discretization

1-D 1 1 1

2-D 5 2.714 1

3-D 9 5.515 1
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Telluride LSLR Method Properties

Good:

• The method is linear and a matrix may be formed.

• It has a local stencil.

• It consists of only cell-centered unknowns. Or, with some changes, node-
centered unknowns. Very pliable.

• It is conservative, if a single D is used at each face.

• The method will work on polyhedra.

• The method is second-order on uniform meshes. The method is likely to
be second order in general if there are not strong material discontinuities
(gut instinct plus comparison with the paper by Ollivier-Gooch and Van
Altena, which is a slightly different method).

• The accuracy of the method can be increased easily by simply increasing
the stencil and adding terms to the Taylor series expansion in the χ2

function. This would, however, exacerbate the material discontinuity
issue.

• The wcf = 1/d2
cf version probably generates a positive definite matrix.

Proving so would be difficult.
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Telluride LSLR Method Properties

Bad:

• The method does not treat material discontinuities rigorously (this is less
of a problem for small discontinuities in the diffusion coefficient, but it
is a show-stopper for radiation transport calculations). The error order
probably degrades to first or zeroth order for strong material discontinu-
ities.

• The method generates an asymmetric matrix.

• It is not exact for linear functions, unless there is a constant diffusion
coefficient.

• The method does not reduce to the standard differencing scheme in 2-D
(5-pt) or 3-D (7-pt) if the mesh is orthogonal and uniform. It reduces
to a 9-pt (2-D) or 27-pt (3-D) stencil, with unusual values. The sten-
cil is second-order, but has additional terms compared to the standard
discretization scheme.

• The wcf = 1 version is probably not positive definite, and not an M-
matrix (it has negative off-diagonal entries for the uniform mesh case).

Indifferent:

• The method generates a “ragged right” matrix (i.e. a non-constant num-
ber of nonzeros per row).
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