
A Viewfactor-based Radiative Heat Transfer
Model for Telluride

Austin Minnich
UC Berkeley

John Turner
LANL

Michael Hall
LANL

August 7, 2002

Abstract

In this paper we describe an implementation of a viewfactor-based radiative
heat transfer model for Telluride. A viewfactor (also known as a form factor or
geometric configuration factor) is a dimensionless factor that generally describes
how much of an object is visible to another object based solely upon the geometry
of the situation. For our purposes this will be defined as the amount of energy
leaving an area Aithat is directly intercepted by Aj , or:

Fij = energy leaving Ai and directly intercepted by Aj / energy leaving Ai

where Fij is the viewfactor from Ai to Aj .
Our algorithm relies on a method commonly used for graphics applications

called radiosity. The fundamental principle of this method is that the radiosity, or
total energy leaving each face is equal to the emitted energy plus the sum of the
reflected energies. This principle leads to a system of linear equations, the solution
of which is the final radiosity of each face. Using this technique, the algorithm
inputs a list of faces, calculates the viewfactors for every face, solves the resulting
system of equations and returns a matrix which contains the radiant flux of each
face. The algorithm is used in the Telluride project the calculate the equilibrium
state of the mold after the mold has been heated. This equilibrium state is then
passed into Telluride as the initial condition of the mold.

1 Introduction

Currently, Telluride models heat flow with the boundary condition:

Qi = σAiK(T 4

i − T 4

amb) (1)

where Q is the rate of radiative heat transfer from a surface j at temperature Tj ,
Tamb is an ambient temperature to which the surface radiates, and K is a constant

1

which takes into account the effects of emissivity and viewfactors [5]. In fact, the actual
interaction in the system is much more complicated, with every face being dependent
on the state of every other face. The method our algorithm uses to determine the radiant
flux of each face is a technique commonly used in graphics rendering called radiosity.
The radiosity, or the total energy leaving each face, is equal to the emitted energies plus
the reflected energies, or:

Btotal = σeT 4

i + ρi

∑

BjFij (2)

where Bi is the emitted energy, ρi is the reflectance of the face i,
∑

BjFij is the
incident flux, and Btotal is the final radiosity of face i. [5]

How much radiation actually reaches face i from face j is dependent on the view-
factor, Fij . In heat transfer a viewfactor is defined as the amount of energy leaving Ai

that is directly intercepted by another area Aj (see Figure 2).
Using this principle and the ideas from radiosity, we see that this leads to a system

of equations of the form:

1 −ρF12 −ρF13 ... −ρF1n

−ρF21 1 −ρF23 ... −ρF2n

−ρF31 −ρF32 1 ... −ρF3n

−ρFn1 1

B1

B2

B3

...

Bn

=

σeT 4

1

σeT 4
2

σeT 4

3

...

σeT 4
n

where Fij is the viewfactor from face i to face j. Note that this system is guaranteed
to converge by Gauss-Seidel because it is diagonal dominant.

To relate the radiosity back to the net radiant flux, we use:

qi = Bi − Ii (3)

Ii =
∑

BjFij (4)

where Bi is the outgoing radiant flux, and Ii is the incident radiant flux. [5]
The temperature of each face is determined by the relation

α
δT

δt
= qrad + qconv + qcond (5)

where α is a conversion constant, qconv term is convection, qcond is conduction,
and qrad is radiation. The convection and conduction modules are already in Telluride;
the radiation term is determined by this algorithm.

2 Viewfactors

2.1 The definition of viewfactors [2]

There are a few ways to arrive at the mathematical definition of a viewfactor, but be-
cause our algorithm is used for heat transfer, we define everything in terms of energy
and heat, instead of other terms used by those in graphics.

2

normal i

R ij

normal j

dAj

dAi

j

i

Figure 1: Example situation between two differential areas

To derive the definition of a viewfactor we first define two differential areas, dAi

and dAj , which are joined by the vector Rij (see Figure 1).
θi is thus the angle between Rij and the normal, ni, to dAi, with θj being defined

likewise.
It can be shown that the distribution of flux from a surface varies according to the

cosine of the angle from the normal(Lambert’s Cosine Law). Using this principle, we
can state:

qθ =
q

π
cos θ =

σT 4

π
cos θ

where qθ is the energy radiating at an angle θ to the normal.
Therefore, the energy radiating through a solid angle sin θdθdφ at an angle θ is:

σT 4

π
cos θ sin θdθdφ

Next, we determine the fraction of the solid angle area taken up by dAj (see figure
2).

This area is equal to the component of the area of dAj in the plane of the solid angle,
dAj cos θ, divided by the solid angle a distance Rij from the source, R2

ij sin θdθdφ, or:

fraction of area taken up by dAj =
dAj cos θ

R2

ij
sin θdθdφ

The energy emitted by dAi and directly intercepted by dAj is therefore:

Qij =
σT 4 cos θi cos θjdAidAj

πR2

ij

(6)

Since σT 4 represents the energy emitted, the rest of the equation describes the
fraction of energy emitted from dAi and directly intercepted by dAj , or the viewfactor.
Therefore, the viewfactor between two differential areas is defined as:

3

Figure 2: The Nusselt unit sphere [6]

dFij =
cos θi cos θjdAidAj

πR2

ij

(7)

We leave the definition in its differential form because the algorithm evaluates it in
this form, making the assumption that each mesh face is approximately a differential
area. The formal definition of a viewfactor from one finite area to another is simply the
double integral of (7) over i and j.

Additionally, we can derive two important relationships. The reciprocity relation-
ship states that dFij and dFji are related by:

dFijdAi = dFjidAj (8)

Secondly, for a closed system,

∑

Fij = 1 (9)

This shows that when the system is closed to the surroundings, every face must
be seen by every other face. The consequences of this relationship with be discussed
elsewhere in the paper.

2.2 Evaluating Viewfactors

There are a few methods currently used to evaluate viewfactors; most are expensive to
run and are used primarily to construct images for computer graphics. These methods
are extremely detailed, as they try to reconstruct a visually realistic scene (see [8]).
This level of detail, for our purposes, is unnecessary. To evaluate the viewfactors, we
calculate (7) from every face i to every other visible face j. These viewfactors are then
stored in a matrix.

The algorithm evaluates (7) by treating all the terms as vectors. To arrive at this
alternate definition of viewfactor, we rewrite (7) as follows:

4

dFij =
‖Ai‖‖Aj‖ cos θi cos θj

π‖Rij‖2

where Ai and Aj are now area vectors normal to their respective faces.
The dot product of any two vectors is:

AB = ‖A‖‖B‖ cosθ

If we let B equal the vector joining the two areas, or Rij we see that:

ARij

‖Rij‖
= ‖A‖ cos θ = Aur

where ur is the unit vector of Rij =
Rij

‖Rij‖
. Our definition of viewfactor thus

becomes:

dFij =
AiurAjur

π‖Rij‖2
(10)

This expression is evaluated from every face i to every other visible face j to form
the viewfactor matrix.

3 The Algorithm

The primary purpose of the algorithm is to return a matrix containing the final radiant
flux of each face. To do this, we first construct the viewfactor matrix by evaluating
(10) for every pair of visible faces. This is the most complicated part of the algorithm:
we cannot simply calculate (10) for every face. We must first ensure that the faces are
visible to each other. We have many tests to exclude those faces that do not partici-
pate in the calculation which will be described below. Once the viewfactor matrix is
constructed, calculating the final radiosity is fairly simple. The algorithm solves the
system of equations formed from the viewfactor matrix and outputs the final radiant
flux matrix (see Figure 3).

3.1 The Tests

3.1.1 The Dot Product Tests

Because we evaluate the viewfactor using vectors, we must remember that the area
vector for each face does have a direction- it is not merely a scalar area term. Care
must be taken to ensure that the area vector points in the proper direction as determined
by the problem. Currently, the area vector is determined according to a right-hand
coordinate system, meaning in an enclosure radiation problem the area vector would
point into the enclosure. Right-hand rules will probably be correct in most, if not all,
problems.

5

Test to see if
faces i and j
see each other

For all faces i and j

If yes calculate
viewfactor
if no, compare
another pair

when finished
solve system of
equations

Output solution

Figure 3: Flow Chart of the algorithm

We can use the direction component of the area vector to our advantage: because of
the direction component, we can easily rule out those faces which do not point towards
each other. To do this, we simply take the dot product of the area vectors of the two
faces in consideration: if the dot product is negative, then the two faces are not pointing
in the same direction; positive, they are facing in the same direction and thus do not
participate in the calculations. This is the first dot product test(see Figures 4 and 5).

Figure 4: Dot product is negative between the two area vectors, so they face each other

Figure 5: Dot product is positive, so one of the faces is in the wrong direction.

This method does contain one major shortfall that must be remedied before we can
be completely sure that two faces participate in the calculation. The problem lies in the
evaluation of the dot product. The dot product does not have a direction term; that is,
two vectors which are pointing towards each other and two vectors which are pointing
in opposite directions have the same dot product. Thus, if we were to use only the first

6

dot product test, vectors pointing towards each other would correctly pass the test, but
vectors pointing away from each other would incorrectly pass the test (see Figure 6).

Figure 6: The top example would correctly pass the first dot product test, but the bottom
example would incorrectly pass. We solve this using the second dot product test.

To solve this problem, we make use of the second dot product test.Using Rij , the
vector between the the faces defined in the previous section, we take the two area
vectors, Ai and Aj , and take the dot product of them with Rij . If Ai and Aj are facing
each other, then, depending on how Rij was defined, the dot product of Ai with Rij

should be positive, and the dot product of Aj with Rij should be negative(Assuming
Rij was defined as si − sj , where s is the position of each face). Through this test, we
are able to differentiate between the faces that are pointing in the same direction and
those that are pointing in opposite directions.

3.1.2 The Occlusion Test

By using the two dot product tests, we know that the faces are pointing towards each
other. Before we can proceed, however, we must consider one more problem: occlu-
sion. Occlusion is defined as the situation that occurs when one face partly or com-
pletely obscures the view of another face. If a face j were occluded by another face k,
our current algorithm would incorrectly include face j in the calculation even though
face k is in the way and thus prevents face j from participating in the calculation(see
Figure 7).

Clearly, the algorithm requires an occlusion test to determine whether the face in
question is occluded by another face. Unfortunately, while easy for the human eye
to discern occlusions of this type, it is extremely difficult for a computer: the routine

face i face j

face k

Figure 7: Example of a possible occlusion.

7

which implements this makes up more than half of the program. There are a few ways
to discern whether one face occludes another; most involve further discretizing the
differential area into small subelements called pixels and projecting each face onto the
pixel grid(see [8], [3]). These methods are mainly used in graphics where a high level
of detail is necessary to construct a visually realistic scene. For our purposes, this level
of detail is unnecessary. We instead use a modified version of this scheme: rather than
discretizing the differential area and projecting each face onto the grid, we simply take
two faces, project them onto a two-dimensional plane, and test to see if the polygons
overlap.

To understand how we accomplish this, consider three faces: i, j, and k. In this
situation, we are testing to see if, from the point of view of face i, there is any face k
that occludes face j. First, we rotate the coordinate system so that it is centered around
face i. Next, we convert the vertices of each face j and k to the new coordinate system.
Now that everything is in terms of the new coordinate system, we convert to spherical
coordinates: equivalent to mapping each face j and k onto Nusselt’s unit sphere [6] (see
Figure 2). Then, to avoid problems with the cyclical nature of spherical coordinates,
we convert back into cartesian coordinates, but with the radius term set to unity. This
effectively disposes of the distance element of the coordinate system and allows us to
consider the faces j and k solely in the xy plane. Finally, we can test to see if face k
occludes face j (for a chart of this process see Figure 8).

For each face j

Rotate Coordinate System

Project into xy plane

For each face i

For each face k
Project into xy plane

Compare projections

If overlap: store index of overlapping face
If no overlap: try another face

If none overlap: use face j in calculation
If overlap: use closest face in calculation

Figure 8: flow chart for the occlusion subroutine.

While it was fairly difficult to get into the position to test whether two faces occlude,
it is even more difficult to test whether two faces do in fact occlude. To do this we
have several tests which handle all the possible cases in polygon intersection. Here we
refer to the faces j and k as polygons, since our tests rely on computational geometry
algorithms to determine whether or not two faces occlude.

The first test determines whether the center of one polygon is in the center of the
other polygon. We compute the center of one polygon, and use a common crossings
test algorithm to test. The crossings algorithm essentially counts the number of in-
tersections of a horizontal ray determined by the center point with all the lines of the

8

First Occlusion Test Example:

Second Occlusion Test Example:

j k

j

k

Figure 9: Possible cases for comparison of polygons in the occlusion subroutine.

polygon. If there are an even number of crossings then the center is outside the poly-
gon; odd number, it is inside. This test handles cases where one polygon might be
completely inside the other polygon.

The second test checks to see if any of the lines forming the polygons intersect. To
do this we simply take each line of one polygon, and check to see if it intersects with
any of the lines forming the second polygon. If there are two intersections in different
locations, then the faces occlude(see Figure 9).

Finally, if none of these checks have been set, then we know that the faces do not
occlude. We perform this for every face i, j, and k that have passed the dot product
tests.

3.2 Putting it Together: The Viewfactor Matrix

While it may seem that we have just described many independent tests, all of these
tests actually work together in order to form the viewfactor matrix, the basis for the
system of linear equation and ultimately the final radiosity of each face. All the tests
contribute to the viewfactor matrix. First, the dot product test is applied(taking the dot
product of the area vectors). If the dot product is positive, then the faces are pointing
in the same direction, are not visible to each other, and the viewfactor matrix element
corresponding to face i and face j is set to zero. If the faces pass this test, then the
second dot product test is applied(taking the dot product of each area vector with the
vector joining the two faces). If this test fails, the element of the viewfactor matrix is set
to zero. Otherwise, we check to see if another face occludes the face in consideration.
If the face is not occluded, then we calculate the viewfactor and put it in the viewfactor
matrix. If the face is occluded, we calculate the viewfactor for the occluding face
and set the viewfactor for the occluded face to zero. We are also able to account for
multiple occlusions: should multiple faces occlude the same face, the routine calculates
the viewfactor for closest face.

Note that this does not allow for partial occlusions: a face is either completely

9

occluded or not occluded at all. Currently, if a face is only slightly occluded then this
is counted as a complete occlusion even though the occluding face may occlude only a
small fraction of the occluded face (see Figure 10).

j

k

Erroneous Occlusion

Figure 10: Our occlusion subroutine will register this as an occlusion even though face
k occludes very little of face j.

4 Relating Radiosity and Temperature

Once we have the viewfactor matrix, we must solve the linear system of equations. The
solution of this system is the final radiosity of each face, or the total energy leaving each
face due to the emitted and reflected energies. Once we have this radiosity matrix there
is one additional step required to determine the final temperature distribution of the
mold. Using the relation:

qrad = Bi − Ii (11)

where Bi is the radiosity matrix we have just calculated, and Ii is the incident flux
equal to:

Ii =
∑

BjFij (12)

Once we have determined qrad we can determine the change in temperature by:

α
δT

δt
= qconv + qcond + qrad (13)

where α is a conversion constant, qconv is the convection term, qcond is the conduc-
tion term, and qrad is the radiation term determined by our algorithm.

4.1 Conservation of energy

Because this algorithm will be used for heat transfer, conservation of energy must be
taken into account. This is accomplished in the viewfactor matrix. When we introduced
the definition of viewfactor, we also stated that, for a closed system:

∑

Fij = 1 (14)

10

This relation simply states that all faces must see each other. However, for most of
the problems for which this algorithm will be used, the system will not be closed: often
there will be an opening at an ambient temperature. Thus Fij cannot sum to unity be-
cause the system is not closed. In addition, our occlusion algorithm does not conserve
energy, as there is no provision for partial occlusions. To solve both these problems,
we first sum Fij . We then subtract this sum from unity. This gives a viewfactor which
represents the fraction of energy for a particular face that was either not conserved in
the occlusion algorithm or goes to an ambient surface. We treat this fraction of en-
ergy as if it were all radiating to an ambient temperature. At the end of the calculation
we have an ambient energy term which represents the energy radiated to the ambient
surface. In this way we ensure that energy is conserved.

5 Runtime

This algorithm is extremely expensive: when most faces are visible to each other the
runtime is close to n3. This is because we necessarily use three loops in order to
incorporate occlusion into our algorithm: two loops for faces i and j, and one additional
loop to check for occlusion with face k. This algorithm is also expensive in terms of
memory because of the viewfactor matrix. Most of the problems for Telluride will
contain thousands of faces: not prohibitively large, but definitely expensive. If the
geometry of the problem is such that most faces do not see each other then the runtime
will approach n2, because most of the faces will not be involved in the calculations. The
viewfactor matrix will thus become more sparse by the same reason, easing memory
requirements.

6 Conclusion

In this paper we have demonstrated how we implemented a viewfactor based radiative
heat transfer model for Telluride. Our algorithm incorporates ideas from the primarily
graphics-oriented radiosity methods, using the original ideas and concepts but changing
the exact implementation to meet our needs. Some changes include the calculation of
the viewfactors and our algorithm for the occlusion problem. We also relate radiosity
back to heat transfer: an idea not used by graphics radiosity. Our algorithm will be
used to determine the final temperature distribution of the mold for Telluride, which
will then be passed into the main code for calculations. In the future, we hope to make
our occlusion test more accurate and include partial occlusions.

References

[1] Ian Ashdown. Eigenvector radiosity. Master’s thesis, The University of British
Columbia, 2001.

[2] R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomenon. John
Wiley & Sons, second edition, 2002.

11

[3] Steven M. Drucker. Radiosity: An illuminating perspective. Technical report,
Media Laboratory, Massachusetts Insitute of Technology, 1992.

[4] A. F. Emery, O. Johansson, M. Lobo, and A. Abrous. A comparative study of
methods for computing the diffuse radiation viewfactors for complex structures.
Journal of Heat Transfer, 113:413–422, May 1991.

[5] Kin Lam. An enclosure radiation model for telluride. proposed model implemented
by this algorithm, 2001.

[6] A. Mavroulakis and A. Trombe. A new semianalytical algorithm for calculating
diffuse plane view factors. Journal of Heat Transfer, 120:279–282, February 1998.

[7] Michael F. Modest. Radiative Heat Transfer. McGraw-Hill, Inc., 1993.

[8] Alan Watt and Mark Watt. Advanced Animation and Rendering Techniques: The-
ory and Practice. Addison-Wesley, 1992.

12

